- Browse by Author
Browsing by Author "Grothe, Michel J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Differential diagnosis of amnestic dementia patients based on an FDG-PET signature of autopsy-confirmed LATE-NC(Wiley, 2023) Grothe, Michel J.; Moscoso, Alexis; Silva-Rodríguez, Jesús; Lange, Catharina; Nho, Kwangsik; Saykin, Andrew J.; Nelson, Peter T.; Schöll, Michael; Buchert, Ralph; Teipel, Stefan; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: Limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is common in advanced age and can underlie a clinical presentation mimicking Alzheimer's disease (AD). We studied whether an autopsy-derived fluorodeoxyglucose positron emission tomography (FDG-PET) signature of LATE-NC provides clinical utility for differential diagnosis of amnestic dementia patients. Methods: Ante mortem FDG-PET patterns from autopsy-confirmed LATE-NC (N = 7) and AD (N = 23) patients were used to stratify an independent cohort of clinically diagnosed AD dementia patients (N = 242) based on individual FDG-PET profiles. Results: Autopsy-confirmed LATE-NC and AD groups showed markedly distinct temporo-limbic and temporo-parietal FDG-PET patterns, respectively. Clinically diagnosed AD dementia patients showing a LATE-NC-like FDG-PET pattern (N = 25, 10%) were significantly older, showed less abnormal AD biomarker levels, lower APOE ε4, and higher TMEM106B risk allele load. Clinically, they exhibited a more memory-predominant profile and a generally slower disease course. Discussion: An autopsy-derived temporo-limbic FDG-PET signature identifies older amnestic patients whose clinical, genetic, and molecular biomarker features are consistent with underlying LATE-NC.Item Differential patterns of gray matter volumes and associated gene expression profiles in cognitively-defined Alzheimer's disease subgroups(Elsevier, 2021) Groot, Colin; Grothe, Michel J.; Mukherjee, Shubhabrata; Jelistratova, Irina; Jansen, Iris; van Loenhoud, Anna Catharina; Risacher, Shannon L.; Saykin, Andrew J.; Mac Donald, Christine L.; Mez, Jesse; Trittschuh, Emily H.; Gryglewski, Gregor; Lanzenberger, Rupert; Pijnenburg, Yolande A.L.; Barkhof, Frederik; Scheltens, Philip; van der Flier, Wiesje M.; Crane, Paul K.; Ossenkoppele, Rik; Radiology and Imaging Sciences, School of MedicineThe clinical presentation of Alzheimer's disease (AD) varies widely across individuals but the neurobiological mechanisms underlying this heterogeneity are largely unknown. Here, we compared regional gray matter (GM) volumes and associated gene expression profiles between cognitively-defined subgroups of amyloid-β positive individuals clinically diagnosed with AD dementia (age: 66 ± 7, 47% male, MMSE: 21 ± 5). All participants underwent neuropsychological assessment with tests covering memory, executive-functioning, language and visuospatial-functioning domains. Subgroup classification was achieved using a psychometric framework that assesses which cognitive domain shows substantial relative impairment compared to the intra-individual average across domains, which yielded the following subgroups in our sample; AD-Memory (n = 41), AD-Executive (n = 117), AD-Language (n = 33), AD-Visuospatial (n = 171). We performed voxel-wise contrasts of GM volumes derived from 3Tesla structural MRI between subgroups and controls (n = 127, age 58 ± 9, 42% male, MMSE 29 ± 1), and observed that differences in regional GM volumes compared to controls closely matched the respective cognitive profiles. Specifically, we detected lower medial temporal lobe GM volumes in AD-Memory, lower fronto-parietal GM volumes in AD-Executive, asymmetric GM volumes in the temporal lobe (left < right) in AD-Language, and lower GM volumes in posterior areas in AD-Visuospatial. In order to examine possible biological drivers of these differences in regional GM volumes, we correlated subgroup-specific regional GM volumes to brain-wide gene expression profiles based on a stereotactic characterization of the transcriptional architecture of the human brain as provided by the Allen human brain atlas. Gene-set enrichment analyses revealed that variations in regional expression of genes involved in processes like mitochondrial respiration and metabolism of proteins were associated with patterns of regional GM volume across multiple subgroups. Other gene expression vs GM volume-associations were only detected in particular subgroups, e.g., genes involved in the cell cycle for AD-Memory, specific sets of genes related to protein metabolism in AD-Language, and genes associated with modification of gene expression in AD-Visuospatial. We conclude that cognitively-defined AD subgroups show neurobiological differences, and distinct biological pathways may be involved in the emergence of these differences.Item Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease(American Medical Association, 2021) Moscoso, Alexis; Grothe, Michel J.; Ashton, Nicholas J.; Karikari, Thomas K.; Rodríguez, Juan Lantero; Snellman, Anniina; Suárez-Calvet, Marc; Blennow, Kaj; Zetterberg, Henrik; Schöll, Michael; Alzheimer’s Disease Neuroimaging Initiative; Medicine, School of MedicineImportance: Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear. Objective: To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury. Design, setting, and participants: This longitudinal cohort study included data from the Alzheimer's Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016. Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements were performed in 2020. This was a multicentric observational study of 1113 participants, including cognitively unimpaired participants as well as patients with cognitive impairment (mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they had available plasma p-tau181 and NfL measurements and at least 1 fluorine-18-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic resonance imaging scan performed at the same study visit. Exclusion criteria included any significant neurologic disorder other than suspected AD; presence of infection, infarction, or multiple lacunes as detected by magnetic resonance imaging; and any significant systemic condition that could lead to difficulty complying with the protocol. Exposures: Plasma p-tau181 and NfL measured with single-molecule array technology. Main outcomes and measures: Longitudinal imaging markers of neurodegeneration (FDG PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale-Cognitive Subscale with 13 tasks). Data were analyzed from June 20 to August 15, 2020. Results: Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600 men [53.9%]; 992 non-Hispanic White participants [89.1%]), a total of 378 individuals (34.0%) were cognitively unimpaired (CU) and 735 participants (66.0%) were cognitively impaired (CImp). Of the CImp group, 537 (73.1%) had mild cognitive impairment, and 198 (26.9%) had AD dementia. Longitudinal changes of plasma p-tau181 were associated with cognitive decline (CU: r = -0.24, P < .001; CImp: r = 0.34, P < .001) and a prospective decrease in glucose metabolism (CU: r = -0.05, P = .48; CImp: r = -0.27, P < .001) and gray matter volume (CU: r = -0.19, P < .001; CImp: r = -0.31, P < .001) in highly AD-characteristic brain regions. These associations were restricted to amyloid-β-positive individuals. Both plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in brain regions typically affected in AD. However, NfL was also associated with neurodegeneration in brain regions exceeding this AD-typical spatial pattern in amyloid-β-negative participants. Mediation analyses found that approximately 25% to 45% of plasma p-tau181 outcomes on cognition measures were mediated by the neuroimaging-derived markers of neurodegeneration, suggesting links between plasma p-tau181 and cognition independent of these measures. Conclusions and relevance: Study findings suggest that plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials.