- Browse by Author
Browsing by Author "Greene, Casey S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Computational genetics analysis of grey matter density in Alzheimer's disease(Springer Nature, 2014-08-22) Zieselman, Amanda L.; Fisher, Jonathan M.; Hu, Ting; Andrews, Peter C.; Greene, Casey S.; Shen, Li; Saykin, Andrew J.; Moore, Jason H.; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineBackground: Alzheimer's disease is the most common form of progressive dementia and there is currently no known cure. The cause of onset is not fully understood but genetic factors are expected to play a significant role. We present here a bioinformatics approach to the genetic analysis of grey matter density as an endophenotype for late onset Alzheimer's disease. Our approach combines machine learning analysis of gene-gene interactions with large-scale functional genomics data for assessing biological relationships. Results: We found a statistically significant synergistic interaction among two SNPs located in the intergenic region of an olfactory gene cluster. This model did not replicate in an independent dataset. However, genes in this region have high-confidence biological relationships and are consistent with previous findings implicating sensory processes in Alzheimer's disease. Conclusions: Previous genetic studies of Alzheimer's disease have revealed only a small portion of the overall variability due to DNA sequence differences. Some of this missing heritability is likely due to complex gene-gene and gene-environment interactions. We have introduced here a novel bioinformatics analysis pipeline that embraces the complexity of the genetic architecture of Alzheimer's disease while at the same time harnessing the power of functional genomics. These findings represent novel hypotheses about the genetic basis of this complex disease and provide open-access methods that others can use in their own studies.Item Network-based analysis of genetic variants associated with hippocampal volume in Alzheimer's disease: a study of ADNI cohorts(BioMed Central, 2016) Song, Ailin; Yan, Jingwen; Kim, Sungeun; Risacher, Shannon Leigh; Wong, Aaron K.; Saykin, Andrew J.; Shen, Li; Greene, Casey S.; Department of Radiology and Imaging Sciences, IU School of MedicineBACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease that causes dementia. While molecular basis of AD is not fully understood, genetic factors are expected to participate in the development and progression of the disease. Our goal was to uncover novel genetic underpinnings of Alzheimer's disease with a bioinformatics approach that accounts for tissue specificity. FINDINGS: We performed genome-wide association studies (GWAS) for hippocampal volume in two Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts. We used these GWAS in a subsequent tissue-specific network-wide association study (NetWAS), which applied nominally significant associations in the initial GWAS to identify disease relevant patterns in a functional network for the hippocampus. We compared prioritized gene lists from NetWAS and GWAS with literature curated AD-associated genes from the Online Mendelian Inheritance in Man (OMIM) database. In the ADNI-1 GWAS, where we also observed an enrichment of low p-values, NetWAS prioritized disease-gene associations in accordance with OMIM annotations. This was not observed in the ADNI-2 dataset. We provide source code to replicate these analyses as well as complete results under permissive licenses. CONCLUSIONS: We performed the first analysis of hippocampal volume using NetWAS, which uses machine learning algorithms applied to tissue-specific functional interaction network to prioritize GWAS results. Our findings support the idea that tissue-specific networks may provide helpful context for understanding the etiology of common human diseases and reveal challenges that network-based approaches encounter in some datasets. Our source code and intermediate results files can facilitate the development of methods to address these challenges.Item Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules(Oxford University Press, 2017-10-15) Yao, Xiaohui; Yan, Jingwen; Liu, Kefei; Kim, Sungeun; Nho, Kwangsik; Risacher, Shannon L.; Greene, Casey S.; Moore, Jason H.; Saykin, Andrew J.; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; BioHealth Informatics, School of Informatics and ComputingMotivation: Network-based genome-wide association studies (GWAS) aim to identify functional modules from biological networks that are enriched by top GWAS findings. Although gene functions are relevant to tissue context, most existing methods analyze tissue-free networks without reflecting phenotypic specificity. Results: We propose a novel module identification framework for imaging genetic studies using the tissue-specific functional interaction network. Our method includes three steps: (i) re-prioritize imaging GWAS findings by applying machine learning methods to incorporate network topological information and enhance the connectivity among top genes; (ii) detect densely connected modules based on interactions among top re-prioritized genes; and (iii) identify phenotype-relevant modules enriched by top GWAS findings. We demonstrate our method on the GWAS of [18F]FDG-PET measures in the amygdala region using the imaging genetic data from the Alzheimer's Disease Neuroimaging Initiative, and map the GWAS results onto the amygdala-specific functional interaction network. The proposed network-based GWAS method can effectively detect densely connected modules enriched by top GWAS findings. Tissue-specific functional network can provide precise context to help explore the collective effects of genes with biologically meaningful interactions specific to the studied phenotype.