- Browse by Author
Browsing by Author "Graff-Radford, Jonathan"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Comparison of CSF phosphorylated tau 181 and 217 for cognitive decline(Wiley, 2022) Mielke, Michelle M.; Aakre, Jeremiah A.; Algeciras-Schimnich, Alicia; Proctor, Nicholas K.; Machulda, Mary M.; Eichenlaub, Udo; Knopman, David S.; Vemuri, Prashanthi; Graff-Radford, Jonathan; Jac, Clifford R., Jr.; Petersen, Ronald C.; Dage, Jeffrey L.; Neurology, School of MedicineIntroduction: The prognostic utility of cerebrospinal fluid (CSF) phosphorylated tau 217 (p-tau217) and p-tau181 is not understood. Methods: Analyses included 753 Mayo Clinic Study on Aging participants (median age = 71.6; 57% male). CSF amyloid beta (Aβ)42 and p-tau181 were measured with Elecsys immunoassays. CSF p-tau181 and p-tau217 were also measured with Meso Scale Discovery (MSD). We used Cox proportional hazards models for risk of mild cognitive impairment (MCI) and linear mixed models for risk of global and domain-specific cognitive decline and cortical thickness. Analyses were stratified by elevated brain amyloid based on CSF Aβ42 or amyloid positron emission tomography for those with imaging. Results: CSF p-tau217 was superior to p-tau181 for the diagnosis of Alzheimer's disease (AD) pathology. CSF MSD p-tau181 and p-tau217 were associated with risk of MCI among amyloid-positive individuals. Differences between CSF p-tau measures predicting cortical thickness were subtle. Discussion: There are subtle differences for CSF p-tau217 and p-tau181 as prognostic AD markers.Item Comparison of Plasma Phosphorylated Tau Species With Amyloid and Tau Positron Emission Tomography, Neurodegeneration, Vascular Pathology, and Cognitive Outcomes(American Medical Association, 2021) Mielke, Michelle M.; Frank, Ryan D.; Dage, Jeffrey L.; Jeromin, Andreas; Ashton, Nicholas J.; Blennow, Kaj; Karikari, Thomas K.; Vanmechelen, Eugene; Zetterberg, Henrik; Algeciras-Schimnich, Alicia; Knopman, David S.; Lowe, Val; Bu, Guojun; Vemuri, Prashanthi; Graff-Radford, Jonathan; Jack, Clifford R., Jr.; Petersen, Ronald C.; Neurology, School of MedicineImportance: Cerebrospinal fluid phosphorylated tau (p-tau) 181, p-tau217, and p-tau231 are associated with neuropathological outcomes, but a comparison of these p-tau isoforms in blood samples is needed. Objective: To conduct a head-to-head comparison of plasma p-tau181 and p-tau231 measured on the single-molecule array (Simoa) platform and p-tau181 and p-tau217 measured on the Meso Scale Discovery (MSD) platform on amyloid and tau positron emission tomography (PET) measures, neurodegeneration, vascular pathology, and cognitive outcomes. Design, setting, and participants: This study included data from the Mayo Clinic Study on Aging collected from March 1, 2015, to September 30, 2017, and analyzed between December 15, 2020, and May 17, 2021. Associations between the 4 plasma p-tau measures and dichotomous amyloid PET, metaregion of interest tau PET, and entorhinal cortex tau PET were analyzed using logistic regression models; the predictive accuracy was summarized using area under the receiver operating characteristic curve (AUROC) statistic. Of 1329 participants without dementia and with p-tau181 and p-tau217 on MSD, 200 participants with plasma p-tau181 and p-tau231 on Simoa and magnetic resonance imaging and amyloid and tau PET data at the same study visit were eligible. Main outcomes and measures: Primary outcomes included amyloid (greater than 1.48 standardized uptake value ratio) and tau PET, white matter hyperintensities, white matter microstructural integrity (fractional anisotropy genu of corpus callosum and hippocampal cingulum bundle), and cognition. Results: Of 200 included participants, 101 (50.5%) were male, and the median (interquartile range [IQR]) age was 79.5 (71.1-84.1) years. A total of 177 were cognitively unimpaired (CU) and 23 had mild cognitive impairment. Compared with amyloid-negative CU participants, among amyloid-positive CU participants, the median (IQR) Simoa p-tau181 measure was 49% higher (2.58 [2.00-3.72] vs 1.73 [1.45-2.13] pg/mL), MSD p-tau181 measure was 53% higher (1.22 [0.91-1.56] vs 0.80 [0.66-0.97] pg/mL), MSD p-tau217 measure was 77% higher (0.23 [0.17-0.34] vs 0.13 [0.09-0.18] pg/mL), and Simoa p-tau231 measure was 49% higher (20.21 [15.60-25.41] vs 14.27 [11.27-18.10] pg/mL). There were no differences between the p-tau species for amyloid PET and tau PET metaregions of interest. However, among CU participants, both MSD p-tau181 and MSD p-tau217 more accurately predicted abnormal entorhinal cortex tau PET than Simoa p-tau181 (MSD p-tau181: AUROC, 0.80 vs 0.70; P = .046; MSD p-tau217: AUROC, 0.81 vs 0.70; P = .04). MSD p-tau181 and p-tau217 and Simoa p-tau181, but not p-tau231, were associated with greater white matter hyperintensity volume and lower white matter microstructural integrity. Conclusions and relevance: In this largely presymptomatic population, these results suggest subtle differences across plasma p-tau species and platforms for the prediction of amyloid and tau PET and magnetic resonance imaging measures of cerebrovascular and Alzheimer-related pathology.Item Demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy: an international cohort study and individual participant data meta-analysis(Elsevier, 2024) Chapleau, Marianne; La Joie, Renaud; Yong, Keir; Agosta, Federica; Allen, Isabel Elaine; Apostolova, Liana; Best, John; Boon, Baayla D. C.; Crutch, Sebastian; Filippi, Massimo; Fumagalli, Giorgio Giulio; Galimberti, Daniela; Graff-Radford, Jonathan; Grinberg, Lea T.; Irwin, David J.; Josephs, Keith A.; Mendez, Mario F.; Mendez, Patricio Chrem; Migliaccio, Raffaella; Miller, Zachary A.; Montembeault, Maxime; Murray, Melissa E.; Nemes, Sára; Pelak, Victoria; Perani, Daniela; Phillips, Jeffrey; Pijnenburg, Yolande; Rogalski, Emily; Schott, Jonathan M.; Seeley, William; Sullivan, A. Campbell; Spina, Salvatore; Tanner, Jeremy; Walker, Jamie; Whitwell, Jennifer L.; Wolk, David A.; Ossenkoppele, Rik; Rabinovici, Gil D.; PCA International Work Group; Neurology, School of MedicineBackground: Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort. Methods: We searched PubMed between database inception and Aug 1, 2021, for all published research studies on posterior cortical atrophy and related terms. We identified research centres from these studies and requested deidentified, individual participant data (published and unpublished) that had been obtained at the first diagnostic visit from the corresponding authors of the studies or heads of the research centres. Inclusion criteria were a clinical diagnosis of posterior cortical atrophy as defined by the local centre and availability of Alzheimer's disease biomarkers (PET or CSF), or a diagnosis made at autopsy. Not all individuals with posterior cortical atrophy fulfilled consensus criteria, being diagnosed using centre-specific procedures or before development of consensus criteria. We obtained demographic, clinical, biofluid, neuroimaging, and neuropathological data. Mean values for continuous variables were combined using the inverse variance meta-analysis method; only research centres with more than one participant for a variable were included. Pooled proportions were calculated for binary variables using a restricted maximum likelihood model. Heterogeneity was quantified using I2. Findings: We identified 55 research centres from 1353 papers, with 29 centres responding to our request. An additional seven centres were recruited by advertising via the Alzheimer's Association. We obtained data for 1092 individuals who were evaluated at 36 research centres in 16 countries, the other sites having not responded to our initial invitation to participate to the study. Mean age at symptom onset was 59·4 years (95% CI 58·9-59·8; I2=77%), 60% (56-64; I2=35%) were women, and 80% (72-89; I2=98%) presented with posterior cortical atrophy pure syndrome. Amyloid β in CSF (536 participants from 28 centres) was positive in 81% (95% CI 75-87; I2=78%), whereas phosphorylated tau in CSF (503 participants from 29 centres) was positive in 65% (56-75; I2=87%). Amyloid-PET (299 participants from 24 centres) was positive in 94% (95% CI 90-97; I2=15%), whereas tau-PET (170 participants from 13 centres) was positive in 97% (93-100; I2=12%). At autopsy (145 participants from 13 centres), the most frequent neuropathological diagnosis was Alzheimer's disease (94%, 95% CI 90-97; I2=0%), with common co-pathologies of cerebral amyloid angiopathy (71%, 54-88; I2=89%), Lewy body disease (44%, 25-62; I2=77%), and cerebrovascular injury (42%, 24-60; I2=88%). Interpretation: These data indicate that posterior cortical atrophy typically presents as a pure, young-onset dementia syndrome that is highly specific for underlying Alzheimer's disease pathology. Further work is needed to understand what drives cognitive vulnerability and progression rates by investigating the contribution of sex, genetics, premorbid cognitive strengths and weaknesses, and brain network integrity.Item Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction(Springer Nature, 2024-06-20) İş, Özkan; Wang, Xue; Reddy, Joseph S.; Min, Yuhao; Yilmaz, Elanur; Bhattarai, Prabesh; Patel, Tulsi; Bergman, Jeremiah; Quicksall, Zachary; Heckman, Michael G.; Tutor-New, Frederick Q.; Demirdogen, Birsen Can; White, Launia; Koga, Shunsuke; Krause, Vincent; Inoue, Yasuteru; Kanekiyo, Takahisa; Cosacak, Mehmet Ilyas; Nelson, Nastasia; Lee, Annie J.; Vardarajan, Badri; Mayeux, Richard; Kouri, Naomi; Deniz, Kaancan; Carnwath, Troy; Oatman, Stephanie R.; Lewis-Tuffin, Laura J.; Nguyen, Thuy; Alzheimer’s Disease Neuroimaging Initiative; Carrasquillo, Minerva M.; Graff-Radford, Jonathan; Petersen, Ronald C.; Jack, Clifford R., Jr.; Kantarci, Kejal; Murray, Melissa E.; Nho, Kwangsik; Saykin, Andrew J.; Dickson, Dennis W.; Kizil, Caghan; Allen, Mariet; Ertekin-Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineTo uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer’s disease, we performed single nucleus RNA sequencing in 24 Alzheimer’s disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer’s disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer’s disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer’s disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer’s disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer’s disease.Item Global neuropathologic severity of Alzheimer's disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels(Springer, 2022-12-27) Murray, Melissa E.; Moloney, Christina M.; Kouri, Naomi; Syrjanen, Jeremy A.; Matchett, Billie J.; Rothberg, Darren M.; Tranovich, Jessica F.; Hicks Sirmans, Tiffany N.; Wiste, Heather J.; Boon, Baayla D. C.; Nguyen, Aivi T.; Reichard, R. Ross; Dickson, Dennis W.; Lowe, Val J.; Dage, Jeffrey L.; Petersen, Ronald C.; Jack, Clifford R., Jr.; Knopman , David S.; Vemuri, Prashanthi; Graff-Radford, Jonathan; Mielke, Michelle M.; Neurology, School of MedicineBackground Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer’s disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. Methods We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-β, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-β (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-β plaques (locus coeruleus) were evaluated. Results The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-β burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (β-coefficient = 0.060, p = 0.016) and amyloid-β pathology (β-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-β (β-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25–0.32) were predicted by the global tau scale, but not by the global amyloid-β scale or plasma p-tau when modeled simultaneously. Conclusions Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-β and tau accumulation in brain, and may be associated with locus coeruleus degeneration.Item Lewy Body Disease is a Contributor to Logopenic Progressive Aphasia Phenotype(Wiley, 2021) Buciuc, Marina; Whitwell, Jennifer L.; Kasanuki, Koji; Graff-Radford, Jonathan; Machulda, Mary M.; Duffy, Joseph R.; Strand, Edythe A.; Lowe, Val J.; Graff-Radford, Neill R.; Rush, Beth K.; Franczak, Malgorzata B.; Flanagan, Margaret E.; Baker, Matthew C.; Rademakers, Rosa; Ross, Owen A.; Ghetti, Bernardino F.; Parisi, Joseph E.; Raghunathan, Aditya; Reichard, R. Ross; Bigio, Eileen H.; Dickson, Dennis W.; Josephs, Keith A.; Pathology and Laboratory Medicine, School of MedicineObjective: The objective of this study was to describe clinical features, [18 F]-fluorodeoxyglucose (FDG)-positron emission tomography (PET) metabolism and digital pathology in patients with logopenic progressive aphasia (LPA) and pathologic diagnosis of diffuse Lewy body disease (DLBD) and compare to patients with LPA with other pathologies, as well as patients with classical features of probable dementia with Lewy bodies (pDLB). Methods: This is a clinicopathologic case-control study of 45 patients, including 20 prospectively recruited patients with LPA among whom 6 were diagnosed with LPA-DLBD. We analyzed clinical features and compared FDG-PET metabolism in LPA-DLBD to an independent group of patients with clinical pDLB and regional α-synuclein burden on digital pathology to a second independent group of autopsied patients with DLBD pathology and antemortem pDLB (DLB-DLBD). Results: All patients with LPA-DLBD were men. Neurological, speech, and neuropsychological characteristics were similar across LPA-DLBD, LPA-Alzheimer's disease (LPA-AD), and LPA-frontotemporal lobar degeneration (LPA-FTLD). Genetic screening of AD, DLBD, and FTLD linked genes were negative with the exception of APOE ε4 allele present in 83% of LPA-DLBD patients. Seventy-five percent of the patients with LPA-DLBD showed a parietal-dominant pattern of hy pometabolism; LPA-FTLD - temporal-dominant pattern, whereas LPA-AD showed heterogeneous patterns of hypometabolism. LPA-DLBD had more asymmetrical hypometabolism affecting frontal lobes, with relatively spared occipital lobe in the nondominantly affected hemisphere, compared to pDLB. LPA-DLBD had minimal atrophy on gross brain examination, higher cortical Lewy body counts, and higher α-synuclein burden in the middle frontal and inferior parietal cortices compared to DLB-DLBD. Interpretation: Whereas AD is the most frequent underlying pathology of LPA, DLBD can also be present and may contribute to the LPA phenotype possibly due to α-synuclein-associated functional impairment of the dominant parietal lobe.Item Longitudinal Clinical, Neuropsychological, and Neuroimaging Characterization of a Kindred with a 12-Octapeptide Repeat Insertion in PRNP: The Next Generation(Taylor & Francis, 2020-08) Townley, Ryan A.; Polsinelli, Angelina J.; Fields, Julie A.; Machulda, Mary M.; Jones, David T.; Graff-Radford, Jonathan; Kantarci, Kejal M.; Lowe, Val J.; Rademakers, Rosa V.; Baker, Matt C.; Kumar, Neeraj; Boeve, Bradley F.; Neurology, School of MedicineBackground: Highly penetrant inherited mutations in the prion protein gene (PRNP) offer a window to study the pathobiology of prion disorders. Method: Clinical, neuropsychological, and neuroimaging characterization of a kindred. Results: Three of four mutation carriers have progressed to a frontotemporal dementia phenotype. Declines in neuropsychological function coincided with changes in FDG-PET at the identified onset of cognitive impairment. Conclusions and relevance: Gene silencing treatments are on the horizon and when they become available, early detection will be crucial. Longitudinal studies involving familial mutation kindreds can offer important insights into the initial neuropsychological and neuroimaging changes necessary for early detection.Item Mayo Normative Studies: Amyloid and Neurodegeneration Negative Normative Data for the Auditory Verbal Learning Test and Sex-Specific Sensitivity to Mild Cognitive Impairment/Dementia(IOS Press, 2024) Stricker, Nikki H.; Christianson, Teresa J.; Pudumjee, Shehroo B.; Polsinelli, Angelina J.; Lundt, Emily S.; Frank, Ryan D.; Kremers, Walter K.; Machulda, Mary M.; Fields, Julie A.; Jack, Clifford R., Jr.; Knopman, David S.; Graff-Radford, Jonathan; Vemuri, Prashanthi; Mielke, Michelle M.; Petersen, Ronald C.; Neurology, School of MedicineBackground: Conventional normative samples include individuals with undetected Alzheimer's disease neuropathology, lowering test sensitivity for cognitive impairment. Objective: We developed Mayo Normative Studies (MNS) norms limited to individuals without elevated amyloid or neurodegeneration (A-N-) for Rey's Auditory Verbal Learning Test (AVLT). We compared these MNS A-N- norms in female, male, and total samples to conventional MNS norms with varying levels of demographic adjustments. Methods: The A-N- sample included 1,059 Mayo Clinic Study of Aging cognitively unimpaired (CU) participants living in Olmsted County, MN, who are predominantly non-Hispanic White. Using a regression-based approach correcting for age, sex, and education, we derived fully-adjusted T-score formulas for AVLT variables. We validated these A-N- norms in two independent samples of CU (n = 261) and mild cognitive impairment (MCI)/dementia participants (n = 392) > 55 years of age. Results: Variability associated with age decreased by almost half in the A-N- norm sample relative to the conventional norm sample. Fully-adjusted MNS A-N- norms showed approximately 7- 9% higher sensitivity to MCI/dementia compared to fully-adjusted MNS conventional norms for trials 1- 5 total and sum of trials. Among women, sensitivity to MCI/dementia increased with each normative data refinement. In contrast, age-adjusted conventional MNS norms showed greatest sensitivity to MCI/dementia in men. Conclusions: A-N- norms show some benefits over conventional normative approaches to MCI/dementia sensitivity, especially for women. We recommend using these MNS A-N- norms alongside MNS conventional norms. Future work is needed to determine if normative samples that are not well characterized clinically show greater benefit from biomarker-refined approaches.Item New Insights into Atypical Alzheimer’s Disease in the Era of Biomarkers(Elsevier, 2021) Graff-Radford, Jonathan; Yong, Keir X.X.; Apostolova, Liana G.; Bouwman, Femke H.; Carrillo, Maria; Dickerson, Bradford C.; Rabinovici, Gil D.; Schott, Jonathan M.; Jones, David T.; Murray, Melissa E.; Neurology, School of MedicineMost patients with Alzheimer's disease present with amnestic problems; however, a substantial proportion, over-represented in young-onset cases, have atypical phenotypes including predominant visual, language, executive, behavioural, or motor dysfunction. In the past, these individuals often received a late diagnosis; however, availability of CSF and PET biomarkers of Alzheimer's disease pathologies and incorporation of atypical forms of Alzheimer's disease into new diagnostic criteria increasingly allows them to be more confidently diagnosed early in their illness. This early diagnosis in turn allows patients to be offered tailored information, appropriate care and support, and individualised treatment plans. These advances will provide improved access to clinical trials, which often exclude atypical phenotypes. Research into atypical Alzheimer's disease has revealed previously unrecognised neuropathological heterogeneity across the Alzheimer's disease spectrum. Neuroimaging, genetic, biomarker, and basic science studies are providing key insights into the factors that might drive selective vulnerability of differing brain networks, with potential mechanistic implications for understanding typical late-onset Alzheimer's disease.Item Performance of plasma phosphorylated tau 181 and 217 in the community(Springer Nature, 2022) Mielke, Michelle M.; Dage, Jeffrey L.; Frank, Ryan D.; Algeciras-Schimnich, Alicia; Knopman, David S.; Lowe, Val J.; Bu, Guojun; Vemuri, Prashanthi; Graff-Radford, Jonathan; Jack, Clifford R., Jr.; Petersen, Ronald C.; Neurology, School of MedicinePlasma phosphorylated tau 181 (P-tau181) and 217 (P-tau217) are indicators of both amyloid and tau pathology in clinical settings, but their performance in heterogeneous community-based populations is unclear. We examined P-tau181 and P-tau217 (n = 1,329, aged 30-98 years), in the population-based Mayo Clinic Study of Aging. Continuous, unadjusted plasma P-tau181 and P-tau217 predicted abnormal amyloid positron-emission tomography (PET) (area under the receiver operating characteristic curve (AUROC) = 0.81-0.86) and tau PET entorhinal cortex (AUROC > 0.80), but was less predictive of a tau PET temporal region of interest (AUROC < 0.70). Multiple comorbidities were associated with higher plasma P-tau181 and P-tau217 levels; the difference between participants with and without chronic kidney disease (CKD) was similar to the difference between participants with and without elevated brain amyloid. The exclusion of participants with CKD and other comorbidities affected the establishment of a normal reference range and cutpoints. Understanding the effect of comorbidities on P-tau181 and P-tau217 levels is important for their future interpretation in the context of clinical screening, diagnosis or prognosis at the population level.