- Browse by Author
Browsing by Author "Gowda, G. A. Nagana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Altered metabolite levels and correlations in patients with colorectal cancer and polyps detected using seemingly unrelated regression analysis(Springer Nature, 2017-11) Chen, Chen; Gowda, G. A. Nagana; Zhu, Jiangjiang; Deng, Lingli; Gu, Haiwei; Chiorean, E. Gabriela; Zaid, Mohammad Abu; Harrison, Marietta; Zhang, Dabao; Zhang, Min; Raftery, Daniel; Graduate Medical Education, IU School of MedicineIntroduction: Metabolomics technologies enable the identification of putative biomarkers for numerous diseases; however, the influence of confounding factors on metabolite levels poses a major challenge in moving forward with such metabolites for pre-clinical or clinical applications. Objectives: To address this challenge, we analyzed metabolomics data from a colorectal cancer (CRC) study, and used seemingly unrelated regression (SUR) to account for the effects of confounding factors including gender, BMI, age, alcohol use, and smoking. Methods: A SUR model based on 113 serum metabolites quantified using targeted mass spectrometry, identified 20 metabolites that differentiated CRC patients (n = 36), patients with polyp (n = 39), and healthy subjects (n = 83). Models built using different groups of biologically related metabolites achieved improved differentiation and were significant for 26 out of 29 groups. Furthermore, the networks of correlated metabolites constructed for all groups of metabolites using the ParCorA algorithm, before or after application of the SUR model, showed significant alterations for CRC and polyp patients relative to healthy controls. Results: The results showed that demographic covariates, such as gender, BMI, BMI2, and smoking status, exhibit significant confounding effects on metabolite levels, which can be modeled effectively. Conclusion: These results not only provide new insights into addressing the major issue of confounding effects in metabolomics analysis, but also shed light on issues related to establishing reliable biomarkers and the biological connections between them in a complex disease.Item Combining NMR and LC/MS Using Backward Variable Elimination: Metabolomics Analysis of Colorectal Cancer, Polyps, and Healthy Controls(ACS Publications, 2016-08-16) Deng, Lingli; Gu, Haiwei; Zhu, Jiangjiang; Gowda, G. A. Nagana; Djukovic, Danijel; Chiorean, Gabriela; Raftery, Daniel; Department of Medicine, School of MedicineBoth nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) play important roles in metabolomics. The complementary features of NMR and MS make their combination very attractive; however, currently the vast majority of metabolomics studies use either NMR or MS separately, and variable selection that combines NMR and MS for biomarker identification and statistical modeling is still not well developed. In this study focused on methodology, we developed a backward variable elimination partial least-squares discriminant analysis algorithm embedded with Monte Carlo cross validation (MCCV-BVE-PLSDA), to combine NMR and targeted liquid chromatography (LC)/MS data. Using the metabolomics analysis of serum for the detection of colorectal cancer (CRC) and polyps as an example, we demonstrate that variable selection is vitally important in combining NMR and MS data. The combined approach was better than using NMR or LC/MS data alone in providing significantly improved predictive accuracy in all the pairwise comparisons among CRC, polyps, and healthy controls. Using this approach, we selected a subset of metabolites responsible for the improved separation for each pairwise comparison, and we achieved a comprehensive profile of altered metabolite levels, including those in glycolysis, the TCA cycle, amino acid metabolism, and other pathways that were related to CRC and polyps. MCCV-BVE-PLSDA is straightforward, easy to implement, and highly useful for studying the contribution of each individual variable to multivariate statistical models. On the basis of these results, we recommend using an appropriate variable selection step, such as MCCV-BVE-PLSDA, when analyzing data from multiple analytical platforms to obtain improved statistical performance and a more accurate biological interpretation, especially for biomarker discovery. Importantly, the approach described here is relatively universal and can be easily expanded for combination with other analytical technologies.Item Differentiating Hepatocellular Carcinoma from Hepatitis C Using Metabolite Profiling(MDPI, 2012-10-10) Wei, Siwei; Suryani, Yuliana; Gowda, G. A. Nagana; Skill, Nicholas; Maluccio, Mary; Raftery, Daniel; Surgery, School of MedicineHepatocellular carcinoma (HCC) accounts for most liver cancer cases worldwide. Contraction of the hepatitis C virus (HCV) is considered a major risk factor for liver cancer. In order to identify the risk of cancer, metabolic profiling of serum samples from patients with HCC (n=40) and HCV (n=22) was performed by 1H nuclear magnetic resonance spectroscopy. Multivariate statistical analysis showed a distinct separation of the two patient cohorts, indicating a distinct metabolic difference between HCC and HCV patient groups based on signals from lipids and other individual metabolites. Univariate analysis showed that three metabolites (choline, valine and creatinine) were significantly altered in HCC. A PLS-DA model based on these three metabolites showed a sensitivity of 80%, specificity of 71% and an area under the receiver operating curve of 0.83, outperforming the clinical marker alpha-fetoprotein (AFP). The robustness of the model was tested using Monte-Carlo cross validation (MCCV). This study showed that metabolite profiling could provide an alternative approach for HCC screening in HCV patients, many of whom have high risk for developing liver cancer.