- Browse by Author
Browsing by Author "Goulet, Robert"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis(BMC, 2006) Sheridan, Carol; Kishimoto, Hiromitsu; Fuchs, Robyn K; Mehrotra, Sanjana; Bhat-Nakshatri, Poornima; Turner, Charles H; Goulet, Robert; Badve, Sunil; Nakshatri, HarikrishnaIntroduction A subpopulation (CD44+/CD24-) of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells has the unique ability to invade, home, and proliferate at sites of metastasis. Methods CD44 and CD24 expression was determined by flow cytometry. Northern blotting was used to determine the expression of proinvasive and 'bone and lung metastasis signature' genes. A matrigel invasion assay and intracardiac inoculation into nude mice were used to evaluate invasion, and homing and proliferation at sites of metastasis, respectively. Results Five among 13 breast cancer cell lines examined (MDA-MB-231, MDA-MB-436, Hs578T, SUM1315, and HBL-100) contained a higher percentage (>30%) of CD44+/CD24- cells. Cell lines with high CD44+/CD24- cell numbers express basal/mesenchymal or myoepithelial but not luminal markers. Expression levels of proinvasive genes (IL-1α, IL-6, IL-8, and urokinase plasminogen activator [UPA]) were higher in cell lines with a significant CD44+/CD24- population than in other cell lines. Among the CD44+/CD24--positive cell lines, MDA-MB-231 has the unique property of expressing a broad range of genes that favor bone and lung metastasis. Consistent with previous studies in nude mice, cell lines with CD44+/CD24- subpopulation were more invasive than other cell lines. However, only a subset of CD44+/CD24--positive cell lines was able to home and proliferate in lungs. Conclusion Breast cancer cells with CD44+/CD24- subpopulation express higher levels of proinvasive genes and have highly invasive properties. However, this phenotype is not sufficient to predict capacity for pulmonary metastasis.Item Differential Effect of Anti-apoptotic Genes Bcl-xL and c-FLIP on Sensitivity of MCF-7 Breast Cancer Cells to Paclitaxel and Docetaxel(International Institute of Anticancer Research, 2005-05-01) Wang, Zhuo; Goulet, Robert; Stanton, Katie J.; Sadaria, Miral; Nakshatri, HarikrishnaBackground: Intrinsic or acquired resistance to chemotherapy is a major clinical problem leading to the fatality of patients with advanced and metastatic breast cancer. The overexpression of anti-apoptotic genes is believed to play a role in the resistance to chemotherapy. In the present study, we tested the sensitivity of MCF-7 breast cancer cells overexpressing anti-apoptotic genes TRAF-1, c-FLIP, Bcl-xL, cIAP-2 or Mn-SOD to paclitaxel and docetaxel. Materials and Methods: MTT and trypan blue dye exclusion assays were performed to examine the sensitivity of different cell lines to docetaxel and paclitaxel. Cell cycle analysis and carboxyfluorescein FLICA assay were employed to determine whether defects in the cell cycle arrest or apoptotic pathway are responsible for the resistance of cells overexpressing Bcl-xL or c-FLIP. Caspase 8 and 9 activities were measured in cells overexpressing Bcl-xL or c-FLIP exposed to docetaxel and paclitaxel using fluorescent substrate cleavage assay. Results: MCF-7 cells overexpressing Bcl-xL but not TRAF-1, cIAP-2 or Mn-SOD were less sensitive to both paclitaxel and docetaxel compared to vector-transfected control cells. Resistance of Bcl-xL-overexpressing cells to taxanes correlated with the failure to activate caspase 9. 2-Methoxyantimycin A3, a chemical inhibitor of Bcl-xL, sensitized Bcl-xL-overexpressing cells to paclitaxel and docetaxel, which suggests the drugs that inhibit Bcl-xL activity can be used as sensitizers to taxanes. MCF-7 cells overexpressing c-FLIP were less sensitive to paclitaxel but not to docetaxel. Paclitaxel failed to induce caspase 8 in c-FLIP-overexpressing cells. Conclusion: Because c-FLIP inhibits the extrinsic pathway of cell death whereas Bcl-xL inhibits the intrinsic pathway of cell death, these results suggest that overexpression of anti-apoptotic genes that inhibit either the extrinsic or intrinsic cell death pathways can reduce sensitivity of cancer cells to paclitaxel, whereas anti-apoptotic genes that inhibit only the intrinsic pathway reduce sensitivity to docetaxel.Item In Vivo Quantitative Imaging Biomarkers of Bone Quality and Mineral Density using Multi-Band-SWIFT Magnetic Resonance Imaging(Elsevier, 2021) Surowiec, Rachel K.; Ram, Sundaresh; Idiyatullin, Djaudat; Goulet, Robert; Schlecht, Stephen H.; Galban, Craig J.; Kozloff, Kenneth M.; Radiology and Imaging Sciences, School of MedicineBone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk. Characterization of treatment efficacy in bone diseases of altered remodeling is complicated by the lack of imaging modality able to safely monitor material-level and biochemical changes in vivo. To improve upon the current state of bone imaging, we tested the efficacy of Multi Band SWeep Imaging with Fourier Transformation (MB-SWIFT) magnetic resonance imaging (MRI) as a readout of bone derangement in an estrogen deficient ovariectomized (OVX) rat model during growth. MB-SWIFT MRI-derived BMD correlated significantly with BMD measured using micro-computed tomography (μCT). In this rodent model, growth appeared to overcome estrogen deficiency as bone mass continued to increase longitudinally over the duration of the study. Nonetheless, after 10 weeks of intervention, MB-SWIFT detected significant changes consistent with estrogen deficiency in cortical water, cortical matrix organization (T1), and marrow fat. Findings point to MB-SWIFT's ability to quantify BMD in good agreement with μCT while providing additive quantitative outcomes about bone quality in a manner consistent with estrogen deficiency. These results indicate MB-SWIFT as a non-ionizing imaging strategy with value for bone imaging and may be a promising technique to progress to the clinic for monitoring and clinical management of patients with bone diseases such as osteoporosis.Item NF-κB activation and interleukin 6 production in fibroblasts by estrogen receptor-negative breast cancer cell-derived interleukin 1α(National Academy of Sciences, 1998-06-09) Bhat-Nakshatri, Poornima; Newton, Thomas R.; Goulet, Robert; Nakshatri, HarikrishnaSeveral angiogenic factors and extracellular matrix-degrading enzymes that promote invasion and metastasis of cancer are produced by stromal fibroblasts that surround cancer cells. The expression of genes that code for some of these proteins is regulated by the transcription factor NF-κB. In this report, we demonstrate that conditioned medium (CM) from estrogen receptor (ER)-negative but not ER-positive breast cancer cells induces NF-κB in fibroblasts. In contrast, CM from both ER-positive and ER-negative breast cancer cells induces NF-κB in macrophages and endothelial cells. NF-κB activation in fibroblasts was accompanied by induction of interleukin 6 (IL-6) and urokinase plasminogen activator (uPA), both of which promote angiogenesis and metastasis. A survey of cytokines known for their ability to induce NF-κB identified IL-1α as the factor responsible for NF-κB activation in fibroblasts. Analysis of primary breast carcinomas revealed the presence of IL-1α transcripts in majority of lymph node-positive breast cancers. These results along with the known role of IL-1α and IL-6 in osteoclast formation provide insight into the mechanism of metastasis and hypercalcemia in advanced breast cancers.Item SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype(BMC, 2010-08-06) Bhat-Nakshatri, Poornima; Appaiah, Hitesh; Ballas, Christopher; Pick-Franke, Patricia; Goulet, Robert; Badve, Sunil; Srour, Edward F; Nakshatri, HarikrishnaBackground Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs). Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT) display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells. Methods MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively. Results Two thousand thirty five genes were differentially expressed (p < 0.001, fold change ≥ 2) between the CD44+/CD24- and CD44-/CD24+ subpopulations of MCF-10A. Thirty-two EMT-associated genes including SLUG, Gli-2, ZEB-1, and ZEB-2 were expressed at higher levels in CD44+/CD24- cells. These EMT-associated genes participate in signaling networks comprising TGFβ, NF-κB, and human chorionic gonadotropin. Treatment with tumor necrosis factor (TNF), which induces NF-κB and represses E-cadherin, or overexpression of SLUG in CD44-/CD24+ MCF-10A cells, gave rise to a subpopulation of CD44+/CD24- cells. Overexpression of constitutively active p65 subunit of NF-κB in MCF-10A resulted in a dramatic shift to the CD44+/CD24+ phenotype. SLUG overexpression in MCF-7 cells generated CD44+/CD24+ cells with enhanced mammosphere forming ability. In contrast, Gli-2 failed to alter CD44 and CD24 expression. Conclusions EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.