- Browse by Author
Browsing by Author "González-Beiras, Camila"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Multiple Class I and Class II Haemophilus ducreyi Strains Cause Cutaneous Ulcers in Children on an Endemic Island(Oxford, 2018-04) Grant, Jacob C.; González-Beiras, Camila; Amick, Kristen M.; Fortney, Kate R.; Gangaiah, Dharanesh; Humphreys, Tricia L.; Mitjà, Oriol; Abecasis, Ana; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineBackground Together with Treponema pallidum subspecies pertenue, Haemophilus ducreyi is a major cause of exudative cutaneous ulcers (CUs) in children. For H. ducreyi, both class I and class II strains, asymptomatic colonization, and environmental reservoirs have been found in endemic regions, but the epidemiology of this infection is unknown. Methods Based on published whole-genome sequences of H. ducreyi CU strains, a single-locus typing system was developed and applied to H. ducreyi–positive CU samples obtained prior to, 1 year after, and 2 years after the initiation of a mass drug administration campaign to eradicate CU on Lihir Island in Papua New Guinea. DNA from the CU samples was amplified with class I and class II dsrA-specific primers and sequenced; the samples were classified into dsrA types, which were geospatially mapped. Selection pressure analysis was performed on the dsrA sequences. Results Thirty-seven samples contained class I sequences, 27 contained class II sequences, and 13 contained both. There were 5 class I and 4 class II types circulating on the island; 3 types accounted for approximately 87% of the strains. The composition and geospatial distribution of the types varied little over time and there was no evidence of selection pressure. Conclusions Multiple strains of H. ducreyi cause CU on an endemic island and coinfections are common. In contrast to recent findings with T. pallidum pertenue, strain composition is not affected by antibiotic pressure, consistent with environmental reservoirs of H. ducreyi. Such reservoirs must be addressed to achieve eradication of H. ducreyi.Item Streptococcus pyogenes Is Associated with Idiopathic Cutaneous Ulcers in Children on a Yaws-Endemic Island(American Society for Microbiology, 2021-01-12) Griesenauer, Brad; González-Beiras, Camila; Fortney, Katherine R.; Lin, Huaiying; Gao, Xiang; Godornes, Charmie; Nelson, David E.; Katz, Barry P.; Lukehart, Sheila A.; Mitjà, Oriol; Dong, Qunfeng; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineExudative cutaneous ulcers (CU) in yaws-endemic areas are associated with Treponema pallidum subsp. pertenue (TP) and Haemophilus ducreyi (HD), but one-third of CU cases are idiopathic (IU). Using mass drug administration (MDA) of azithromycin, a yaws eradication campaign on Lihir Island in Papua New Guinea reduced but failed to eradicate yaws; IU rates remained constant throughout the campaign. To identify potential etiologies of IU, we obtained swabs of CU lesions (n = 279) and of the skin of asymptomatic controls (AC; n = 233) from the Lihir Island cohort and characterized their microbiomes using a metagenomics approach. CU bacterial communities were less diverse than those of the AC. Using real-time multiplex PCR with pathogen-specific primers, we separated CU specimens into HD-positive (HD+), TP+, HD+TP+, and IU groups. Each CU subgroup formed a distinct bacterial community, defined by the species detected and/or the relative abundances of species within each group. Streptococcus pyogenes was the most abundant organism in IU (22.65%) and was enriched in IU compared to other ulcer groups. Follow-up samples (n = 31) were obtained from nonhealed ulcers; the average relative abundance of S. pyogenes was 30.11% in not improved ulcers and 0.88% in improved ulcers, suggesting that S. pyogenes in the not improved ulcers may be azithromycin resistant. Catonella morbi was enriched in IU that lacked S. pyogenes As some S. pyogenes and TP strains are macrolide resistant, penicillin may be the drug of choice for CU azithromycin treatment failures. Our study will aid in the design of diagnostic tests and selective therapies for CU.IMPORTANCE Cutaneous ulcers (CU) affect approximately 100,000 children in the tropics each year. While two-thirds of CU are caused by Treponema pallidum subspecies pertenue and Haemophilus ducreyi, the cause(s) of the remaining one-third is unknown. Given the failure of mass drug administration of azithromycin to eradicate CU, the World Health Organization recently proposed an integrated disease management strategy to control CU. Success of this strategy requires determining the unknown cause(s) of CU. By using 16S rRNA gene sequencing of swabs obtained from CU and the skin of asymptomatic children, we identified another possible cause of skin ulcers, Streptococcus pyogenes Although S. pyogenes is known to cause impetigo and cellulitis, this is the first report implicating the organism as a causal agent of CU. Inclusion of S. pyogenes into the integrated disease management plan will improve diagnostic testing and treatment of this painful and debilitating disease of children and strengthen elimination efforts.Item Two Streptococcus pyogenes emm types and several anaerobic bacterial species are associated with idiopathic cutaneous ulcers in children after community-based mass treatment with azithromycin(Public Library of Science, 2022-12-19) Griesenauer, Brad; Xing, Yue; Fortney, Katherine R.; Gao, Xiang; González-Beiras, Camila; Nelson, David E.; Ren, Jie; Mitjà, Oriol; Dong, Qunfeng; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineBackground: In yaws-endemic areas, two-thirds of exudative cutaneous ulcers (CU) are associated with Treponema pallidum subsp. pertenue (TP) and Haemophilus ducreyi (HD); one-third are classified as idiopathic ulcers (IU). A yaws eradication campaign on Lihir Island in Papua New Guinea utilizing mass drug administration (MDA) of azithromycin initially reduced but failed to eradicate yaws; IU rates remained constant throughout the study. Using 16S rRNA gene sequencing, we previously determined that Streptococcus pyogenes was associated with some cases of IU. Here, we applied shotgun metagenomics to the same samples we analyzed previously by 16S rRNA sequencing to verify this result, identify additional IU-associated microorganisms, and determine why S. pyogenes-associated IU might have persisted after MDA of azithromycin. Methodology/principal findings: We sequenced DNA extracted from 244 CU specimens separated into four groups based upon microorganism-specific PCR results (HD+, TP+, TP+HD+, and TP-HD- or IU). S. pyogenes was enriched in IU (24.71% relative abundance [RA]) specimens compared to other ulcer sub-groups, confirming our prior results. We bioinformatically identified the emm (M protein gene) types found in the S. pyogenes IU specimens and found matches to emm156 and emm166. Only ~39% of IU specimens contained detectable S. pyogenes, suggesting that additional organisms could be associated with IU. In the sub-set of S. pyogenes-negative IU specimens, Criibacterium bergeronii, a member of the Peptostreptococcaceae, and Fusobacterium necrophorum (7.07% versus 0.00% RA and 2.18% versus 0.00% RA, respectively), were enriched compared to the S. pyogenes-positive sub-set. Although a broad range of viruses were detected in the CU specimens, none were specifically associated with IU. Conclusions/significance: Our observations confirm the association of S. pyogenes with IU in yaws-endemic areas, and suggest that additional anaerobic bacteria, but not other microorganisms, may be associated with this syndrome. Our results should aid in the design of diagnostic tests and selective therapies for CU.