ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Golnick, Phoenix"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effects of Local Weather Variation on Water-column Stratification and Hypoxia in the Western, Sandusky, and Central Basins of Lake Erie
    (MDPI, 2017-04) Perello, Melanie M.; Kane, Douglas D.; Golnick, Phoenix; Hughes, Maya C.; Thomas, Matt A.; Conroy, Joseph D.; Department of Earth Sciences, School of Science
    Hypoxia, low dissolved oxygen (DO) concentrations (<2 mg/L), has been a major issue in Lake Erie for decades. While much emphasis has been placed on biological factors, particularly algal blooms, contributing to hypolimnetic oxygen depletion, there has been little focus on the role of weather. For this study, we monitored water temperature and DO concentrations at sites in the western, central, and Sandusky basins in Lake Erie during June and July 2010–2012. We then compared trends in stratification and DO concentrations to weather patterns during that period. We found that during those three years, there was significant variation in weather patterns, particularly decreased ice coverage and increased storm events in 2012. These weather patterns corresponded to 2012 having the warmest water temperatures, some of the lowest DO concentrations, and a deeper and thinner hypolimnion (especially in the central basin) than the previous years. We found a relationship between weather and hypoxia, providing further evidence for why these basins are susceptible to low DO conditions during summer months. The role of weather in hypoxia is another indication that the lake is vulnerable to effects of climate change and should be considered in management strategies.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University