- Browse by Author
Browsing by Author "Glenn, Lindsey"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 12-Lipoxygenase governs the innate immune pathogenesis of islet inflammation and autoimmune diabetes(The American Society for Clinical Investigation, 2021-07-22) Kulkarni, Abhishek; Pineros, Annie R.; Walsh, Melissa A.; Casimiro, Isabel; Ibrahim, Sara; Hernandez-Perez, Marimar; Orr, Kara S.; Glenn, Lindsey; Nadler, Jerry L.; Morris, Margaret A.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Anderson, Ryan M.; Pediatrics, School of MedicineMacrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of β cells and the subsequent development of hyperglycemia. The depletion or inhibition of 12-LOX in this model resulted in reduced macrophage infiltration into islets and the preservation of β cell mass. In NOD mice, the deletion of the gene encoding 12-LOX in the myeloid lineage resulted in reduced insulitis with reductions in proinflammatory macrophages, a suppressed T cell response, preserved β cell mass, and almost complete protection from the development of T1D. 12-LOX depletion caused a defect in myeloid cell migration, a function required for immune surveillance and tissue injury responses. This effect on migration resulted from the loss of the chemokine receptor CXCR3. Transgenic expression of the gene encoding CXCR3 rescued the migratory defect in zebrafish 12-LOX morphants. Taken together, our results reveal a formative role for innate immune cells in the early pathogenesis of T1D and identify 12-LOX as an enzyme required to promote their prodiabetogenic phenotype in the context of autoimmunity.Item 12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets(Oxford University Press, 2017-08-01) Ma, Kaiwen; Xiao, An; Park, So Hyun; Glenn, Lindsey; Jackson, Laura; Barot, Tatvam; Weaver, Jessica R.; Taylor-Fishwick, David A.; Luci, Diane K.; Maloney, David J.; Mirmira, Raghavendra G.; Imai, Yumi; Nadler, Jerry L.; Pediatrics, School of MedicineContext: The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). Objectives: We aimed to test the efficacy of ML355, a highly selective, small molecule inhibitor of 12-LO, for the preservation of islet function. Design: Human islets from nondiabetic donors were incubated with a mixture of tumor necrosis factor α , interluekin-1β, and interferon-γ to model islet inflammation. Cytokine-treated islets and human islets from T2D donors were incubated in the presence and absence of ML355. Setting: In vitro study. Participants: Human islets from organ donors aged >20 years of both sexes and any race were used. T2D status was defined from either medical history or most recent hemoglobin A1c value >6.5%. Intervention: Glucose stimulation. Main Outcome Measures: Static and dynamic insulin secretion and oxygen consumption rate (OCR). Results: ML355 prevented the reduction of insulin secretion and OCR in cytokine-treated human islets and improved both parameters in human islets from T2D donors. Conclusions: ML355 was efficacious in improving human islet function after cytokine treatment and in T2D islets in vitro. The study suggests that the blockade of the 12-LO pathway may serve as a target for both form of diabetes and provides the basis for further study of this small molecule inhibitor in vivo.Item Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes(Elsevier, 2022) Piñeros, Annie R.; Kulkarni, Abhishek; Gao, Hongyu; Orr, Kara S.; Glenn, Lindsey; Huang, Fei; Liu, Yunlong; Gannon, Maureen; Syed, Farooq; Wu, Wenting; Anderson, Cara M.; Evans-Molina, Carmella; McDuffie, Marcia; Nadler, Jerry L.; Morris, Margaret A.; Mirmira, Raghavendra G.; Tersey, Sarah A.; Pediatrics, School of MedicineType 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet β cells. We hypothesize that inflammatory signaling within β cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in β cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of β cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in β cells exhibit an increase in a population of β cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in β cells promotes autoimmunity during type 1 diabetes progression.