- Browse by Author
Browsing by Author "Gentry, Matthew S."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item The 5th International Lafora Epilepsy Workshop: Basic science elucidating therapeutic options and preparing for therapies in the clinic(Elsevier, 2020-02) Gentry, Matthew S.; Afawi, Zaid; Armstrong, Dustin D.; Delgado-Escueta, Antonio; Goldberg, Y. Paul; Grossman, Tamar R.; Guinovart, Joan J.; Harris, Frank; Hurley, Thomas D.; Michelucci, Roberto; Minassian, Berge A.; Sanz, Pascual; Worby, Carolyn A.; Serratosa, Jose M.; Biochemistry and Molecular Biology, School of MedicineLafora disease (LD) is both a fatal childhood epilepsy and a glycogen storage disease caused by recessive mutations in either the Epilepsy progressive myoclonus 2A (EPM2A) or EPM2B genes. Hallmarks of LD are aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) that are a disease driver. The 5th International Lafora Epilepsy Workshop was recently held in Alcala de Henares, Spain. The workshop brought together nearly 100 clinicians, academic and industry scientists, trainees, National Institutes of Health (NIH) representation, and friends and family members of patients with LD. The workshop covered aspects of LD ranging from defining basic scientific mechanisms to elucidating a LD therapy or cure and a recently launched LD natural history study.Item Accurate and sensitive quantitation of glucose and glucose phosphates derived from storage carbohydrates by mass spectrometry(Elsevier, 2020-02-15) Young, Lyndsay E.A.; Brizzee, Corey O.; Macedo, Jessica K. A.; Murphy, Robert D.; Contreras, Christopher J.; DePaoli-Roach, Anna A.; Roach, Peter J.; Gentry, Matthew S.; Sun, Ramon C.; Biochemistry and Molecular Biology, School of MedicineThe addition of phosphate groups into glycogen modulates its branching pattern and solubility which all impact its accessibility to glycogen interacting enzymes. As glycogen architecture modulates its metabolism, it is essential to accurately evaluate and quantify its phosphate content. Simultaneous direct quantitation of glucose and its phosphate esters requires an assay with high sensitivity and a robust dynamic range. Herein, we describe a highly-sensitive method for the accurate detection of both glycogen-derived glucose and glucose-phosphate esters utilizing gas-chromatography coupled mass spectrometry. Using this method, we observed higher glycogen levels in the liver compared to skeletal muscle, but skeletal muscle contained many more phosphate esters. Importantly, this method can detect femtomole levels of glucose and glucose phosphate esters within an extremely robust dynamic range with excellent accuracy and reproducibility. The method can also be easily adapted for the quantification of plant starch, amylopectin or other biopolymers.Item Brain glycogen serves as a critical glucosamine cache required for protein glycosylation(Elsevier, 2021) Sun, Ramon C.; Young, Lyndsay E.A.; Bruntz, Ronald C.; Markussen, Kia H.; Zhou, Zhengqiu; Conroy, Lindsey R.; Hawkinson, Tara R.; Clarke, Harrison A.; Stanback, Alexandra E.; Macedo, Jessica K.A.; Emanuelle, Shane; Brewer, M. Kathryn; Rondon, Alberto L.; Mestas, Annette; Sanders, William C.; Mahalingan, Krishna K.; Tang, Buyun; Chikwana, Vimbai M.; Segvich, Dyann M.; Contreras, Christopher J.; Allenger, Elizabeth J.; Brainson, Christine F.; Johnson, Lance A.; Taylor, Richard E.; Armstrong, Dustin D.; Shaffer, Robert; Waechter, Charles J.; Vander Kooi, Craig W.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.; Drake, Richard R.; Gentry, Matthew S.; Biochemistry and Molecular Biology, School of MedicineGlycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.Item Lafora disease offers a unique window into neuronal glycogen metabolism(American Society for Biochemistry and Molecular Biology, 2018-05-11) Gentry, Matthew S.; Guinovart, Joan J.; Minassian, Berge A.; Roach, Peter J.; Serratosa, Jose M.; Biochemistry and Molecular Biology, School of MedicineLafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase.Item Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion(Elsevier, 2019-07-25) Brewer, M. Kathryn; Uittenbogaard, Annette; Austin, Grant L.; Segvich, Dyann M.; DePaoli-Roach, Anna; Roach, Peter J.; McCarthy, John J.; Simmons, Zoe R.; Brandon, Jason A.; Zhou, Zhengqiu; Zeller, Jill; Young, Lyndsay E. A.; Sun, Ramon C.; Pauly, James R.; Aziz, Nadine M.; Hodges, Bradley L.; McKnight, Tracy R.; Armstrong, Dustin D.; Gentry, Matthew S.; Biochemistry and Molecular Biology, School of Medicine