- Browse by Author
Browsing by Author "Gelbert, Lawrence M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist(American Association of Neurological Surgeons, 2017-02) Wang, Haiyan; Cai, Shanbao; Bailey, Barbara J.; Saadatzadeh, M. Reza; Ding, Jixin; Tonsing-Carter, Eva; Georgiadis, Taxiarchis M.; Gunter, T. Zachary; Long, Eric C.; Minto, Robert E.; Gordon, Kevin R.; Sen, Stephanie E.; Cai, Wenjing; Eitel, Jacob A.; Waning, David L.; Bringman, Lauren R.; Wells, Clark D.; Murray, Mary E.; Sarkaria, Jann N.; Gelbert, Lawrence M.; Jones, David R.; Cohen-Gadol, Aaron A.; Mayo, Lindsey D.; Shannon, Harlan E.; Pollok, Karen E.; Pediatrics, School of MedicineOBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.Item Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine(Springer, 2014) Gelbert, Lawrence M.; Cai, Shufen; Lin, Xi; Sanchez-Martinez, Concepcion; del Prado, Miriam; Lallena, Maria Jose; Torres, Raquel; Ajamie, Rose T.; Wishart, Graham N.; Flack, Robert Steven; Neubauer, Blake Lee; Young, Jamie; Chan, Edward M.; Iversen, Philip; Cronier, Damien; Kreklau, Emiko; de Dios, Alfonso; Pediatrics, School of MedicineThe G1 restriction point is critical for regulating the cell cycle and is controlled by the Rb pathway (CDK4/6-cyclin D1-Rb-p16/ink4a). This pathway is important because of its inactivation in a majority of human tumors. Transition through the restriction point requires phosphorylation of retinoblastoma protein (Rb) by CDK4/6, which are highly validated cancer drug targets. We present the identification and characterization of a potent CDK4/6 inhibitor, LY2835219. LY2835219 inhibits CDK4 and CDK6 with low nanomolar potency, inhibits Rb phosphorylation resulting in a G1 arrest and inhibition of proliferation, and its activity is specific for Rb-proficient cells. In vivo target inhibition studies show LY2835219 is a potent inhibitor of Rb phosphorylation, induces a complete cell cycle arrest and suppresses expression of several Rb-E2F-regulated proteins 24 hours after a single dose. Oral administration of LY2835219 inhibits tumor growth in human tumor xenografts representing different histologies in tumor-bearing mice. LY2835219 is effective and well tolerated when administered up to 56 days in immunodeficient mice without significant loss of body weight or tumor outgrowth. In calu-6 xenografts, LY2835219 in combination with gemcitabine enhanced in vivo antitumor activity without a G1 cell cycle arrest, but was associated with a reduction of ribonucleotide reductase expression. These results suggest LY2835219 may be used alone or in combination with standard-of-care cytotoxic therapy. In summary, we have identified a potent, orally active small-molecule inhibitor of CDK4/6 that is active in xenograft tumors. LY2835219 is currently in clinical development.