- Browse by Author
Browsing by Author "Ge, Ruiyang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Brain-age prediction: Systematic evaluation of site effects, and sample age range and size(Wiley, 2024) Yu, Yuetong; Cui, Hao-Qi; Haas, Shalaila S.; New, Faye; Sanford, Nicole; Yu, Kevin; Zhan, Denghuang; Yang, Guoyuan; Gao, Jia-Hong; Wei, Dongtao; Qiu, Jiang; Banaj, Nerisa; Boomsma, Dorret I.; Breier, Alan; Brodaty, Henry; Buckner, Randy L.; Buitelaar, Jan K.; Cannon, Dara M.; Caseras, Xavier; Clark, Vincent P.; Conrod, Patricia J.; Crivello, Fabrice; Crone, Eveline A.; Dannlowski, Udo; Davey, Christopher G.; de Haan, Lieuwe; de Zubicaray, Greig I.; Di Giorgio, Annabella; Fisch, Lukas; Fisher, Simon E.; Franke, Barbara; Glahn, David C.; Grotegerd, Dominik; Gruber, Oliver; Gur, Raquel E.; Gur, Ruben C.; Hahn, Tim; Harrison, Ben J.; Hatton, Sean; Hickie, Ian B.; Hulshoff Pol, Hilleke E.; Jamieson, Alec J.; Jernigan, Terry L.; Jiang, Jiyang; Kalnin, Andrew J.; Kang, Sim; Kochan, Nicole A.; Kraus, Anna; Lagopoulos, Jim; Lazaro, Luisa; McDonald, Brenna C.; McDonald, Colm; McMahon, Katie L.; Mwangi, Benson; Piras, Fabrizio; Rodriguez-Cruces, Raul; Royer, Jessica; Sachdev, Perminder S.; Satterthwaite, Theodore D.; Saykin, Andrew J.; Schumann, Gunter; Sevaggi, Pierluigi; Smoller, Jordan W.; Soares, Jair C.; Spalletta, Gianfranco; Tamnes, Christian K.; Trollor, Julian N.; Van't Ent, Dennis; Vecchio, Daniela; Walter, Henrik; Wang, Yang; Weber, Bernd; Wen, Wei; Wierenga, Lara M.; Williams, Steven C. R.; Wu, Mon-Ju; Zunta-Soares, Giovana B.; Bernhardt, Boris; Thompson, Paul; Frangou, Sophia; Ge, Ruiyang; ENIGMA-Lifespan Working Group; Psychiatry, School of MedicineStructural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.Item Normative Modeling of Brain Morphometry Across the Lifespan Using CentileBrain: Algorithm Benchmarking and Model Optimization(bioRxiv, 2023-12-02) Ge, Ruiyang; Yu, Yuetong; Qi, Yi Xuan; Fan, Yunan Vera; Chen, Shiyu; Gao, Chuntong; Haas, Shalaila S.; Modabbernia, Amirhossein; New, Faye; Agartz, Ingrid; Asherson, Philip; Ayesa-Arriola, Rosa; Banaj, Nerisa; Banaschewski, Tobias; Baumeister, Sarah; Bertolino, Alessandro; Boomsma, Dorret I.; Borgwardt, Stefan; Bourque, Josiane; Brandeis, Daniel; Breier, Alan; Brodaty, Henry; Brouwer, Rachel M.; Buckner, Randy; Buitelaar, Jan K.; Cannon, Dara M.; Caseras, Xavier; Cervenka, Simon; Conrod, Patricia J.; Crespo-Facorro, Benedicto; Crivello, Fabrice; Crone, Eveline A.; de Haan, Liewe; de Zubicaray, Greig I.; Di Giorgio, Annabella; Erk, Susanne; Fisher, Simon E.; Franke, Barbara; Frodl, Thomas; Glahn, David C.; Grotegerd, Dominik; Gruber, Oliver; Gruner, Patricia; Gur, Raquel E.; Gur, Ruben C.; Harrison, Ben J.; Hatton, Sean N.; Hickie, Ian; Howells, Fleur M.; Hulshoff Pol, Hilleke E.; Huyser, Chaim; Jernigan, Terry L.; Jiang, Jiyang; Joska, John A.; Kahn, René S.; Kalnin, Andrew J.; Kochan, Nicole A.; Koops, Sanne; Kuntsi, Jonna; Lagopoulos, Jim; Lazaro, Luisa; Lebedeva, Irina S.; Lochner, Christine; Martin, Nicholas G.; Mazoyer, Bernard; McDonald, Brenna C.; McDonald, Colm; McMahon, Katie L.; Nakao, Tomohiro; Nyberg, Lars; Piras, Fabrizio; Portella, Maria J.; Qiu, Jiang; Roffman, Joshua L.; Sachdev, Perminder S.; Sanford, Nicole; Satterthwaite, Theodore D.; Saykin, Andrew J.; Schumann, Gunter; Sellgren, Carl M.; Sim, Kang; Smoller, Jordan W.; Soares, Jair; Sommer, Iris E.; Spalletta, Gianfranco; Stein, Dan J.; Tamnes, Christian K.; Thomopolous, Sophia I.; Tomyshev, Alexander S.; Tordesillas-Gutiérrez, Diana; Trollor, Julian N.; van 't Ent, Dennis; van den Heuvel, Odile A.; van Erp, Theo Gm.; van Haren, Neeltje Em.; Vecchio, Daniela; Veltman, Dick J.; Walter, Henrik; Wang, Yang; Weber, Bernd; Wei, Dongtao; Wen, Wei; Westlye, Lars T.; Wierenga, Lara M.; Williams, Steven Cr.; Wright, Margaret J.; Medland, Sarah; Wu, Mon-Ju; Yu, Kevin; Jahanshad, Neda; Thompson, Paul M.; Frangou, Sophia; Psychiatry, School of MedicineWe present an empirically benchmarked framework for sex-specific normative modeling of brain morphometry that can inform about the biological and behavioral significance of deviations from typical age-related neuroanatomical changes and support future study designs. This framework was developed using regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The Multivariate Factorial Polynomial Regression (MFPR) emerged as the preferred algorithm optimized using nonlinear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins, and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3,000 study participants. The model and scripts described here are freely available through CentileBrain (https://centilebrain.org/).