- Browse by Author
Browsing by Author "Garimella, Pranav S."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Admission plasma uromodulin and the risk of acute kidney injury in hospitalized patients with cirrhosis: a pilot study(American Physiological Society, 2019-10-01) Patidar, Kavish R.; Garimella, Pranav S.; Macedo, Etienne; Slaven, James E.; Ghabril, Marwan S.; Weber, Regina E.; Anderson, Melissa; Orman, Eric S.; Nephew, Lauren D.; Desai, Archita P.; Chalasani, Naga; El-Achkar, Tarek M.; Medicine, School of MedicineAcute kidney injury (AKI) is a common complication in hospitalized patients with cirrhosis. Uromodulin, a protein uniquely produced by the kidney and released both in the urine and circulation, has been shown to regulate AKI and is linked to tubular reserve. Although low levels of urine uromodulin are associated with AKI after cardiac surgery, it is unclear whether circulating uromodulin can stratify the risk of AKI, particularly in a susceptible population such as hospitalized patients with cirrhosis. Thus, we investigated whether plasma uromodulin measured at the time of admission is associated with subsequent hospital-acquired AKI (defined by a rise in serum creatinine >0.3mg/dL within 48 h or ≥ 1.5 times baseline) in patients with cirrhosis. A total of 98 patients [mean age 54 yr, Model for Endstage Liver Disease Sodium (MELD-Na) score 19, and baseline creatinine of 0.95 mg/dL] were included, of which 13% (n = 13) developed AKI. Median uromodulin levels were significantly lower in patients who developed AKI compared with patients who did not (9.30 vs. 13.35 ng/mL, P = 0.02). After adjusting for age, sex, diabetes, hypertension, albumin, and MELD-Na score as covariates on multivariable logistic regression, uromodulin was independently associated with AKI [odd ratios of 1.19 (95% confidence interval 1.02, 1.37; P = 0.02)]. Lower uromodulin levels on admission are associated with increased odds of subsequent AKI in hospitalized patients with cirrhosis. Further studies are needed to better understand the role of uromodulin in the pathogenesis and as a predictive biomarker of AKI in this population. NEW & NOTEWORTHY In this study, we found that admission plasma uromodulin levels are significantly lower in patients who developed subsequent acute kidney injury (AKI) during their hospital stay compared with patients who did not. Additionally, uromodulin is independently associated with AKI development after adjusting for clinically relevant parameters such as age, sex, diabetes, hypertension, severity of cirrhosis, and kidney function. To our knowledge, this is the first study linking plasma uromodulin with AKI development in patients with cirrhosis.Item Circulating Uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel(American Association for the Advancement of Science, 2019-10) LaFavers, Kaice A.; Macedo, Etienne; Garimella, Pranav S.; Lima, Camila; Khan, Shehnaz; Myslinski, Jered; McClintick, Jeanette; Witzmann, Frank A.; Winfree, Seth; Phillips, Carrie; Hato, Takashi; Dagher, Pierre; Wu, Xue-Ru; El-Achkar, Tarek M.; Micanovic, Radmila; Medicine, School of MedicineHigh serum concentrations of kidney-derived protein uromodulin (Tamm-Horsfall protein or THP) have recently been shown to be independently associated with low mortality in both older adults and cardiac patients, but the underlying mechanism remains unclear. Here, we show that THP inhibits the generation of reactive oxygen species (ROS) both in the kidney and systemically. Consistent with this experimental data, the concentration of circulating THP in patients with surgery-induced acute kidney injury (AKI) correlated with systemic oxidative damage. THP in the serum dropped after AKI, and was associated with an increase in systemic ROS. The increase in oxidant injury correlated with post-surgical mortality and need for dialysis. Mechanistically, THP inhibited the activation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) channel. Furthermore, inhibition of TRPM2 in vivo in a mouse model, mitigated the systemic increase in ROS during AKI and THP deficiency. Our results suggest that THP is a key regulator of systemic oxidative stress by suppressing TRPM2 activity and our findings might help to explain how circulating THP deficiency is linked with poor outcomes and increased mortality.Item Optimal Care for Kidney Health: Development of a Merit-based Incentive Payment System (MIPS) Value Pathway(Wolters Kluwer, 2023) Tummalapalli, Sri Lekha; Struthers, Sarah A.; White, David L.; Beckrich, Amy; Brahmbhatt, Yasmin; Erickson, Kevin F.; Garimella, Pranav S.; Gould, Edward R.; Gupta, Nupur; Lentine, Krista L.; Lew, Susie Q.; Liu, Frank; Mohan, Sumit; Somers, Michael; Weiner, Daniel E.; Bieber, Scott D.; Mendu, Mallika L.; Medicine, School of MedicineThe Merit-based Incentive Payment System (MIPS) is a mandatory pay-for-performance program through the Centers for Medicare & Medicaid Services (CMS) that aims to incentivize high-quality care, promote continuous improvement, facilitate electronic exchange of information, and lower health care costs. Previous research has highlighted several limitations of the MIPS program in assessing nephrology care delivery, including administrative complexity, limited relevance to nephrology care, and inability to compare performance across nephrology practices, emphasizing the need for a more valid and meaningful quality assessment program. This article details the iterative consensus-building process used by the American Society of Nephrology Quality Committee from May 2020 to July 2022 to develop the Optimal Care for Kidney Health MIPS Value Pathway (MVP). Two rounds of ranked-choice voting among Quality Committee members were used to select among nine quality metrics, 43 improvement activities, and three cost measures considered for inclusion in the MVP. Measure selection was iteratively refined in collaboration with the CMS MVP Development Team, and new MIPS measures were submitted through CMS's Measures Under Consideration process. The Optimal Care for Kidney Health MVP was published in the 2023 Medicare Physician Fee Schedule Final Rule and includes measures related to angiotensin-converting enzyme inhibitor and angiotensin receptor blocker use, hypertension control, readmissions, acute kidney injury requiring dialysis, and advance care planning. The nephrology MVP aims to streamline measure selection in MIPS and serves as a case study of collaborative policymaking between a subspecialty professional organization and national regulatory agencies.Item Pretransplant Serum Uromodulin and Its Association with Delayed Graft Function Following Kidney Transplantation—A Prospective Cohort Study(MDPI, 2021-06-11) Kemmner, Stephan; Holzmann-Littig, Christopher; Sandberger, Helene; Bachmann, Quirin; Haberfellner, Flora; Torrez, Carlos; Schmaderer, Christoph; Heemann, Uwe; Renders, Lutz; Assfalg, Volker; El-Achkar, Tarek M.; Garimella, Pranav S.; Scherberich, Jürgen; Steubl, Dominik; Medicine, School of MedicineDelayed graft function (DGF) following kidney transplantation is associated with increased risk of graft failure, but biomarkers to predict DGF are scarce. We evaluated serum uromodulin (sUMOD), a potential marker for tubular integrity with immunomodulatory capacities, in kidney transplant recipients and its association with DGF. We included 239 kidney transplant recipients and measured sUMOD pretransplant and on postoperative Day 1 (POD1) as independent variables. The primary outcome was DGF, defined as need for dialysis within one week after transplantation. In total, 64 patients (27%) experienced DGF. In multivariable logistic regression analysis adjusting for recipient, donor and transplant associated risk factors each 10 ng/mL higher pretransplant sUMOD was associated with 47% lower odds for DGF (odds ratio (OR) 0.53, 95% confidence interval (95%-CI) 0.30–0.82). When categorizing pretransplant sUMOD into quartiles, the quartile with the lowest values had 4.4-fold higher odds for DGF compared to the highest quartile (OR 4.41, 95%-CI 1.54–13.93). Adding pretransplant sUMOD to a model containing established risk factors for DGF in multivariable receiver-operating-characteristics (ROC) curve analysis, the area-under-the-curve improved from 0.786 [95%-CI 0.723–0.848] to 0.813 [95%-CI 0.755–0.871, p = 0.05]. SUMOD on POD1 was not associated with DGF. In conclusion, higher pretransplant sUMOD was independently associated with lower odds for DGF, potentially serving as a non-invasive marker to stratify patients according to their risk for developing DGF early in the setting of kidney transplantation.Item Uromodulin (Tamm–Horsfall protein): guardian of urinary and systemic homeostasis(Oxford, 2020-01) Micanovic, Radmila; LaFavers, Kaice; Garimella, Pranav S.; Wu, Xue-Ru; El-Achkar, Tarek M.; Medicine, School of MedicineBiology has taught us that a protein as abundantly made and conserved among species as Tamm–Horsfall protein (THP or uromodulin) cannot just be a waste product serving no particular purpose. However, for many researchers, THP is merely a nuisance during urine proteome profiling or exosome purification and for clinicians an enigmatic entity without clear disease implications. Thanks to recent human genetic and correlative studies and animal modeling, we now have a renewed appreciation of this highly prevalent protein in not only guarding urinary homeostasis, but also serving as a critical mediator in systemic inter-organ signaling. Beyond a mere barrier that lines the tubules, or a surrogate for nephron mass, mounting evidence suggests that THP is a multifunctional protein critical for modulating renal ion channel activity, salt/water balance, renal and systemic inflammatory response, intertubular communication, mineral crystallization and bacterial adhesion. Indeed, mutations in THP cause a group of inherited kidney diseases, and altered THP expression is associated with increased risks of urinary tract infection, kidney stone, hypertension, hyperuricemia and acute and chronic kidney diseases. Despite the recent surge of information surrounding THP’s physiological functions and disease involvement, our knowledge remains incomplete regarding how THP is normally regulated by external and intrinsic factors, how precisely THP deficiency leads to urinary and systemic pathophysiology and in what clinical settings THP can be used as a theranostic biomarker and a target for modulation to improve patient outcomes.