- Browse by Author
Browsing by Author "Gao, Bin"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPα-miRNA-223 axis(Wolters Kluwer, 2022) Ren, Ruixue; He, Yong; Ding, Dong; Cui, Aoyuan; Bao, Huarui; Ma, Jing; Hou, Xin; Li, Yu; Feng, Dechun; Li, Xiaoling; Liangpunsakul, Suthat; Gao, Bin; Wang, Hua; Medicine, School of MedicineBackground and aims: Aging exacerbates liver neutrophil infiltration and alcohol-associated liver disease (ALD) in mice and humans, but the underlying mechanisms remain obscure. This study aimed to examine the effect of aging and alcohol consumption on neutrophilic Sirtuin 1 (SIRT1) and microRNA-223 (miR-223), and their contribution to ALD pathogeneses. Approach and results: Young and aged myeloid-specific Sirt1 knockout mice were subjected to chronic-plus-binge ethanol feeding. Blood samples from healthy controls and patients with chronic alcohol drinking who presented with acute intoxication were analyzed. Neutrophilic Sirt1 and miR-223 expression were down-regulated in aged mice compared with young mice. Deletion of the Sirt1 gene in myeloid cells including neutrophils exacerbated chronic-plus-binge ethanol-induced liver injury and inflammation and down-regulated neutrophilic miR-223 expression. Immunoprecipitation experiments revealed that SIRT1 promoted C/EBPα deacetylation by directly interacting with C/EBPα, a key transcription factor that controls miR-223 biogenesis, and subsequently elevated miR-223 expression in neutrophils. Importantly, down-regulation of SIRT1 and miR-223 expression was also observed in circulating neutrophils from middle-aged and elderly subjects compared with those from young individuals. Chronic alcohol users with acute intoxication had a reduction in neutrophilic SIRT1 expression in young and middle-aged patients, with a greater reduction in the latter group. The neutrophilic SIRT1 expression correlated with neutrophilic miR-223 and serum alanine transaminase levels in those patients. Conclusions: Aging increases the susceptibility of alcohol-induced liver injury in mice and humans through the down-regulation of the neutrophilic SIRT1-C/EBPα-miR-223 axis, which could be a therapeutic target for the prevention and/or treatment of ALD.Item Alcohol and fat promote steatohepatitis: a critical role for fat-specific protein 27/CIDEC(BMJ Journals, 2016-08) Liangpunsakul, Suthat; Gao, Bin; Medicine, School of MedicineAlcoholic liver disease (ALD) is a major public health problem worldwide and is the leading cause of end-stage liver disease. While the ultimate control of ALD will require the prevention of alcohol abuse, better understanding of the mechanisms of alcohol-induced liver injury may lead to treatments of fatty liver, alcoholic hepatitis, and prevention or delay of occurrence of cirrhosis. The elucidation and the discovery of several new concepts in ALD pathogenesis have raised our understanding on the complex mechanisms and the potential in developing the new strategies for therapeutic benefits. In this review, we provide the most up-to-date information on the basic molecular mechanisms focusing on the role of fat-specific protein 27/CIDEC in the pathogenesis of ALD.Item Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance(Ingenta, 2017-07-07) Gao, Bin; Xu, Ming-Jiang; Bertola, Adeline; Wang, Hua; Zhou, Zhou; Liangpunsakul, Suthat; Medicine, School of MedicineAlcoholic liver disease (ALD), a leading cause of chronic liver injury worldwide, comprises a range of disorders including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Over the last five decades, many animal models for the study of ALD pathogenesis have been developed. Recently, a chronic-plus-binge ethanol feeding model was reported. This model induces significant steatosis, hepatic neutrophil infiltration, and liver injury. A clinically relevant model of high-fat diet feeding plus binge ethanol was also developed, which highlights the risk of excessive binge drinking in obese/overweight individuals. All of these models recapitulate some features of the different stages of ALD and have been widely used by many investigators to study the pathogenesis of ALD and to test for therapeutic drugs/components. However, these models are somewhat variable, depending on mouse genetic background, ethanol dose, and animal facility environment. This review focuses on these models and discusses these variations and some methods to improve the feeding protocol. The pathogenesis, clinical relevance, and translational studies of these models are also discussed.Item Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1/p38MAPKα-dependent mechanisms(American Society for Clinical Investigation, 2020-06-16) Ma, Jing; Cao, Haixia; Rodrigues, Robim M.; Xu, Mingjiang; Ren, Tianyi; He, Yong; Hwang, Seonghwan; Feng, Dechun; Ren, Ruixue; Yang, Peixin; Liangpunsakul, Suthat; Sun, Jian; Gao, Bin; Medicine, School of MedicineAlcohol-associated liver disease is a spectrum of liver disorders with histopathological changes ranging from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Recent data suggest that chronic-plus-binge ethanol intake induces steatohepatitis by promoting release by hepatocytes of proinflammatory mitochondrial DNA–enriched (mtDNA-enriched) extracellular vesicles (EVs). The aim of the present study was to investigate the role of the stress kinase apoptosis signal–regulating kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38) in chronic-plus-binge ethanol–induced steatohepatitis and mtDNA-enriched EV release. Microarray analysis revealed the greatest hepatic upregulation of metallothionein 1 and 2 (Mt1/2), which encode 2 of the most potent antioxidant proteins. Genetic deletion of the Mt1 and Mt2 genes aggravated ethanol-induced liver injury, as evidenced by elevation of serum ALT, neutrophil infiltration, oxidative stress, and ASK1/p38 activation in the liver. Inhibition or genetic deletion of Ask1 or p38 ameliorated ethanol-induced liver injury, inflammation, ROS levels, and expression of phagocytic oxidase and ER stress markers in the liver. In addition, inhibition of ASK1 or p38 also attenuated ethanol-induced mtDNA-enriched EV secretion from hepatocytes. Taken together, these findings indicate that induction of hepatic mtDNA-enriched EVs by ethanol is dependent on ASK1 and p38, thereby promoting alcoholic steatohepatitis.Item Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure(American Society for Clinical Investigation, 2022) Ma, Jing; Guillot, Adrien; Yang, Zhihong; Mackowiak, Bryan; Hwang, Seonghwan; Park, Ogyi; Peiffer, Brandon J.; Ahmadi, Ali Reza; Melo, Luma; Kusumanchi, Praveen; Huda, Nazmul; Saxena, Romil; He, Yong; Guan, Yukun; Feng, Dechun; Sancho-Bru, Pau; Zang, Mengwei; MacGregor Cameron, Andrew; Bataller, Ramon; Tacke, Frank; Sun, Zhaoli; Liangpunsakul, Suthat; Gao, Bin; Pathology and Laboratory Medicine, School of MedicineIntrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.Item Ethanol and its Nonoxidative Metabolites Promote Acute Liver Injury by Inducing ER Stress, Adipocyte Death, and Lipolysis(Elsevier, 2023) Park, Seol Hee; Seo, Wonhyo; Xu, Ming-Jiang; Mackowiak, Bryan; Lin, Yuhong; He, Yong; Fu, Yaojie; Hwang, Seonghwan; Kim, Seung-Jin; Guan, Yukun; Feng, Dechun; Yu, Liqing; Lehner, Richard; Liangpunsakul, Suthat; Gao, Bin; Medicine, School of MedicineBackground & aims: Binge drinking in patients with metabolic syndrome accelerates the development of alcohol-associated liver disease. However, the underlying mechanisms remain elusive. We investigated if oxidative and nonoxidative alcohol metabolism pathways, diet-induced obesity, and adipose tissues influenced the development of acute liver injury in a single ethanol binge model. Methods: A single ethanol binge was administered to chow-fed or high-fat diet (HFD)-fed wild-type and genetically modified mice. Results: Oral administration of a single dose of ethanol induced acute liver injury and hepatic endoplasmic reticulum (ER) stress in chow- or HFD-fed mice. Disruption of the Adh1 gene increased blood ethanol concentration and exacerbated acute ethanol-induced ER stress and liver injury in both chow-fed and HFD-fed mice, while disruption of the Aldh2 gene did not affect such hepatic injury despite high blood acetaldehyde levels. Mechanistic studies showed that alcohol, not acetaldehyde, promoted hepatic ER stress, fatty acid synthesis, and increased adipocyte death and lipolysis, contributing to acute liver injury. Increased serum fatty acid ethyl esters (FAEEs), which are formed by an enzyme-mediated esterification of ethanol with fatty acids, were detected in mice after ethanol gavage, with higher levels in Adh1 knockout mice than in wild-type mice. Deletion of the Ces1d gene in mice markedly reduced the acute ethanol-induced increase of blood FAEE levels with a slight but significant reduction of serum aminotransferase levels. Conclusions: Ethanol and its nonoxidative metabolites, FAEEs, not acetaldehyde, promoted acute alcohol-induced liver injury by inducing ER stress, adipocyte death, and lipolysis.Item IL-1 receptor like 1 protects against alcoholic liver injury by limiting NF-κB activation in hepatic macrophages(Elsevier, 2017) Wang, Meng; Shen, Guannan; Xu, Liangguo; Liu, Xiaodong; Brown, Jared M.; Feng, Dechun; Ross, Ruth Ann; Gao, Bin; Liangpunsakul, Suthat; Ju, Cynthia; Medicine, School of MedicineBackground & Aim Alcohol consumption increases intestinal permeability and causes damage to hepatocytes, leading to the release of pathogen- and damage-associated molecular pattern molecules (PAMPs and DAMPs), stimulating hepatic macrophages and activating NF-κB. The resultant inflammation exacerbates alcoholic liver disease (ALD). However, much less is known about the mechanisms attenuating inflammation and preventing disease progression in most heavy drinkers. Interleukin (IL)-33 is a DAMP (alarmin) released from dead cells that acts through its receptor, IL-1 receptor like 1 (ST2). ST2 signaling has been reported to either stimulate or inhibit NF-κB activation. The role of IL-33/ST2 in ALD has not been studied. Methods Serum levels of IL-33 and its decoy receptor, soluble ST2 (sST2) were measured in ALD patients. Alcohol-induced liver injury, inflammation and hepatic macrophage activation were compared between wild-type, IL-33−/− and ST2−/− mice in several models. Results Elevation of serum IL-33 and sST2 were only observed in patients with severe decompensated ALD. Consistently, in mice with mild ALD without significant cell death and IL-33 release, IL-33 deletion did not affect alcohol-induced liver damage. However, ST2-deletion exacerbated ALD, through enhancing NF-κB activation in liver macrophages. In contrast, when extracellular IL-33 was markedly elevated, liver injury and inflammation were attenuated in both IL-33−/− and ST2−/− mice compared to wild-type mice. Conclusion Our data revealed a dichotomous role of IL-33/ST2 signaling during ALD development. At early and mild stages, ST2 restrains the inflammatory activation of hepatic macrophages, through inhibiting NF-κB, and plays a protective function in an IL-33-independent fashion. During severe liver injury, significant cell death and marked IL-33 release occur, which triggers IL-33/ST2 signaling and exacerbates tissue damage. Lay summary In mild ALD, ST2 negatively regulates the inflammatory activation of hepatic macrophages, thereby protecting against alcohol-induced liver damage, whereas in the case of severe liver injury, the release of extracellular IL-33 may exacerbate tissue inflammation by triggering the canonical IL-33/ST2L signaling in hepatic macrophages.Item Interleukin-20 exacerbates acute hepatitis and bacterial infection by downregulating IκBζ target genes in hepatocytes(Elsevier, 2021) He, Yong; Feng, Dechun; Hwang, Seonghwan; Mackowiak, Bryan; Wang, Xiaolin; Xiang, Xiaogang; Rodrigues, Robim M.; Fu, Yaojie; Ma, Jing; Ren, Tianyi; Ait-Ahmed, Yeni; Xu, Mingjiang; Liangpunsakul, Suthat; Gao, Bin; Medicine, School of MedicineBackground & aims: Interleukin (IL)-20 and IL-22 belong to the IL-10 family. IL-10 is a well-documented anti-inflammatory cytokine while IL-22 is well known for epithelial protection and its antibacterial function, showing great therapeutic potential for organ damage; however, the function of IL-20 remains largely unknown. Methods: Il20 knockout (Il20-/-) mice and wild-type littermates were generated and injected with Concanavalin A (ConA) and Klebsiella pneumoniae (K.P.) to induce acute hepatitis and bacterial infection, respectively. Results: Il20-/- mice were resistant to acute hepatitis and exhibited selectively elevated levels of the hepatoprotective cytokine IL-6. Such selective inhibition of IL-6 by IL-20 was due to IL-20 targeting hepatocytes that produce high levels of IL-6 but a limited number of other cytokines. Mechanistically, IL-20 upregulated NAD(P)H: quinone oxidoreductase 1 (NQO1) expression and subsequently promoted the protein degradation of transcription factor IκBζ, resulting in selective downregulation of the IκBζ-dependent gene Il6 as well several other IκBζ-dependent genes including lipocalin-2 (Lcn2). Given the important role of IL-6 and LCN2 in limiting bacterial infection, we examined the effect of IL-20 on bacterial infection and found Il20-/- mice were resistant to K.P. infection and exhibited elevated levels of hepatic IκBζ-dependent antibacterial genes. Moreover, IL-20 upregulated hepatic NQO1 by binding to IL-22R1/IL-20R2 and activating ERK/p38MAPK/NRF2 signaling pathways. Finally, the levels of hepatic IL1B, IL20, and IκBζ target genes were elevated, and correlated with each other, in patients with severe alcoholic hepatitis. Conclusions: IL-20 selectively inhibits hepatic IL-6 production rather than exerting IL-10-like broad anti-inflammatory properties. Unlike IL-22, IL-20 aggravates acute hepatitis and bacterial infection. Thus, anti-IL-20 therapy could be a promising option to control acute hepatitis and bacterial infection. Lay summary: Several interleukin (IL)-20 family cytokines have been shown to play important roles in controllimg inflammatory responses, infection and tissue damage, but the role of IL-20 remains unclear. Herein, we elucidated the role of IL-20 in liver disease and bacterial infection. We show that IL-20 can aggravate hepatitis and bacterial infection; thus, targeting IL-20 holds promise for the treatment of patients with liver disease.Item MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6–p47phox–oxidative stress pathway in neutrophils(BMJ, 2017-04) Li, Man; He, Yong; Zhou, Zhou; Ramirez, Teresa; Gao, Yueqiu; Gao, Yanhang; Ross, Ruth A.; Cao, Haixia; Cai, Yan; Xu, Mingjiang; Feng, Dechun; Zhang, Ping; Liangpunsakul, Suthat; Gao, Bin; Department of Medicine, IU School of MedicineObjectives Chronic-plus-binge ethanol feeding activates neutrophils and exacerbates liver injury in mice. This study investigates how recent excessive drinking affects peripheral neutrophils and liver injury in alcoholics, and how miR-223, one of the most abundant microRNAs (miRNAs) in neutrophils, modulates neutrophil function and liver injury in ethanol-fed mice. Designs Three hundred alcoholics with (n=140) or without (n=160) recent excessive drinking and 45 healthy controls were enrolled. Mice were fed an ethanol diet for 10 days followed by a single binge of ethanol. Results Compared with healthy controls or alcoholics without recent drinking, alcoholics with recent excessive drinking had higher levels of circulating neutrophils, which correlated with serum levels of alanine transaminase (ALT) and aspartate transaminase (AST). miRNA array analysis revealed that alcoholics had elevated serum miR-223 levels compared with healthy controls. In chronic-plus-binge ethanol feeding mouse model, the levels of miR-223 were increased in both serum and neutrophils. Genetic deletion of the miR-223 gene exacerbated ethanol-induced hepatic injury, neutrophil infiltration, reactive oxygen species (ROS) and upregulated hepatic expression of interleukin (IL)-6 and phagocytic oxidase (phox) p47phox. Mechanistic studies revealed that miR-223 directly inhibited IL-6 expression and subsequently inhibited p47phox expression in neutrophils. Deletion of the p47phox gene ameliorated ethanol-induced liver injury and ROS production by neutrophils. Finally, miR-223 expression was downregulated, while IL-6 and p47phox expression were upregulated in peripheral blood neutrophils from alcoholics compared with healthy controls. Conclusions miR-223 is an important regulator to block neutrophil infiltration in alcoholic liver disease and could be a novel therapeutic target for the treatment of this malady.Item Mitochondrial DNA-enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity(American Society for Clinical Investigation, 2017-07-20) Cai, Yan; Xu, Ming-Jiang; Koritzinsky, Erik H.; Zhou, Zhou; Wang, Wei; Cao, Haixia; Yuen, Peter S.T.; Ross, Ruth A.; Star, Robert A.; Liangpunsaku, Suthat; Gao, Bin; Medicine, School of MedicineOver the last several years, one of the major advances in the field of alcoholic liver disease research was the discovery that binge alcohol consumption induced neutrophilia and hepatic neutrophil infiltration in chronically ethanol-fed mice and human subjects with excessive alcohol use (EAU); however, the underlying mechanisms remain obscure. Here, we demonstrated that chronic EAU patients with a history of recent excessive drinking (EAU + RD) had higher serum levels of mitochondrial DNA (mtDNA)-enriched microparticles (MPs) than EAU without recent drinking (EAU - RD) and healthy controls, which correlated positively with circulating neutrophils. Similarly, mice with chronic-plus-binge (E10d + 1B) ethanol feeding also had markedly elevated serum levels of mtDNA-enriched MPs, with activation of hepatic ER stress and inflammatory responses. Inhibition of ER stress by gene KO or inhibitors attenuated ethanol-induced elevation of mtDNA-enriched MPs, neutrophilia, and liver injury. The data from the study of hepatocyte-specific deletion of the protein kinase RNA-like ER kinase (Perk) gene in mice and of cultured hepatocytes demonstrated that hepatocytes were the main source of mtDNA-enriched MPs after ethanol feeding. Finally, administration of mtDNA-enriched MPs isolated from E10d+1B-fed mice caused neutrophilia in mice. In conclusion, E10d + 1B ethanol consumption activates hepatic ER stress-dependent mtDNA-enriched MP release, leading to neutrophilia and liver injury.