- Browse by Author
Browsing by Author "Gallegos, Scarlet"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Influence of nonsynaptic α1 glycine receptors on ethanol consumption and place preference(Wiley, 2019-03-18) Muñoz, Braulio; Gallegos, Scarlet; Peters, Christian; Murath, Pablo; Lovinger, David M.; Homanics, Gregg E.; Aguayo, Luis G.; Pharmacology and Toxicology, School of MedicineAlcohol abuse leads to great medical, social, and economic burdens throughout the world. It is believed that the rewarding actions of alcohol are mediated by alterations in the mesolimbic dopaminergic system leading to increased levels of dopamine in the nucleus accumbens (nAc). Little is known about the role that ligand gated ion channels (LGIC), such as glycine receptors (GlyR), have in regulating levels of ethanol intake and place preference. In this study, we used Knock-in (KI) mice that have ethanol insensitive α1 GlyRs (KK385/386AA) and a combination of electrophysiological and behavioral approaches to examine how expression of ethanol resistant α1 GlyRs in brain neurons might affect binge drinking and conditioned place preference. Data show that tonic α1 GlyR-mediated currents that modulate accumbal excitability were exclusively sensitive to ethanol only in WT mice. Behavioral studies showed that the KI mice have a higher intake of ethanol upon first exposure to drinking and greater conditioned place preference to ethanol, suggesting that α1 GlyRs in the brain have a protective role against abuse. This study suggests that non-synaptic α1 containing GlyRs have a role in motivational and early reinforcing effects of ethanol and opens a novel opportunity for pharmacotherapy development to treat alcohol use disorders.Item Presence of ethanol-sensitive and ethanol-insensitive glycine receptors in the ventral tegmental area and prefrontal cortex in mice(Wiley, 2021) Araya, Anibal; Gallegos, Scarlet; Viveros, Rodrigo; San Martin, Loreto; Muñoz, Braulio; Harvey, Robert J.; Zeilhofer, Hanns U.; Aguayo, Luis G.; Pharmacology and Toxicology, School of MedicineBackground and purpose: Glycine receptors composed of α1 and β subunits are primarily found in the spinal cord and brainstem and are potentiated by ethanol (10-100 mM). However, much less is known about the presence, composition and ethanol sensitivity of these receptors in higher CNS regions. Here, we examined two regions of the brain reward system, the ventral tegmental area (VTA) and the prefrontal cortex (PFC), to determine their glycine receptor subunit composition and sensitivity to ethanol. Experimental approach: We used Western blot, immunohistochemistry and electrophysiological techniques in three different models: wild-type C57BL/6, glycine receptor subunit α1 knock-in and glycine receptor subunit α2 knockout mice. Key results: Similar levels of α and β receptor subunits were detected in both brain regions, and electrophysiological recordings demonstrated the presence of glycine-activated currents in both areas. Sensitivity of glycine receptors to glycine was lower in the PFC compared with VTA. Picrotoxin only partly blocked the glycine-activated current in the PFC and VTA, indicating that both regions express heteromeric αβ receptors. Glycine receptors in VTA neurons, but not in PFC neurons, were potentiated by ethanol. Conclusion and implications: Glycine receptors in VTA neurons from WT and α2 KO mice were potentiated by ethanol, but not in neurons from the α1 KI mice, supporting the conclusion that α1 glycine receptors are predominantly expressed in the VTA. By contrast, glycine receptors in PFC neurons were not potentiated in any of the mouse models studied, suggesting the presence of α2/α3/α4, rather than α1 glycine receptor subunits.