- Browse by Author
Browsing by Author "Galderisi, Alfonso"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Early Impairment of Insulin Sensitivity, β-Cell Responsiveness, and Insulin Clearance in Youth with Stage 1 Type 1 Diabetes(Oxford University Press, 2021) Galderisi, Alfonso; Moran, Antoinette; Evans-Molina, Carmella; Martino, Mariangela; Santoro, Nicola; Caprio, Sonia; Cobelli, Claudio; Pediatrics, School of MedicineContext: Clinical onset of type 1 diabetes (Stage 3 T1D) is preceded by a presymptomatic phase characterized by multiple islet autoantibodies with normal glucose tolerance (Stage 1 T1D). Objective: The aim was to explore the metabolic phenotypes of β-cell function and insulin sensitivity and clearance in normoglycemic youth with Stage 1 T1D and compare them with healthy nonrelated peers during a 3-hour oral glucose tolerance test (OGTT). Methods: Twenty-eight lean youth, 14 with ≥2 islet autoantibodies (cases) and 14 healthy controls underwent a 3-hour 9-point OGTT with measurement of glucose, C-peptide, and insulin. The oral minimal model was used to quantitate β-cell responsiveness (φtotal) and insulin sensitivity (SI), allowing assessment of β-cell function by the disposition index (DI=φtotal×SI). Fasting insulin clearance (CL0) was calculated as the ratio between the fasting insulin secretion rate (ISR) and plasma insulin levels (ISR0/I0), while postload clearance (CL180) was estimated by the ratio of AUC of ISR over the plasma insulin AUC for the 3-hour OGTT (ISRAUC/IAUC). Participants with impaired fasting glucose, impaired glucose tolerance, or any OGTT glucose concentration ≥200 mg/dL were excluded. Results: Cases (10.5 years [8, 15]) exhibited reduced DI (P < .001) due to a simultaneous reduction in both φtotal (P < 0.001) and SI (P = .008) compared with controls (11.5 years [10.4, 14.9]). CL0 and CL180 were lower in cases than in controls (P = .005 and P = .019). Conclusion: Presymptomatic Stage 1 T1D in youth is associated with reduced insulin sensitivity and lower β-cell responsiveness, and the presence of blunted insulin clearance.Item Endpoints for clinical trials in type 1 diabetes drug development(Elsevier, 2024) Galderisi, Alfonso; Marks, Brynn E.; DiMeglio, Linda A.; de Beaufort, Carine; Pediatrics, School of MedicineItem Trajectory of beta cell function and insulin clearance in stage 2 type 1 diabetes: natural history and response to teplizumab(Springer, 2025) Galderisi, Alfonso; Sims, Emily K.; Evans‑Molina, Carmella; Petrelli, Alessandra; Cuthbertson, David; Nathan, Brandon M.; Ismail, Heba M.; Herold, Kevan C.; Moran, Antoinette; Pediatrics, School of MedicineAims/hypothesis: We aimed to analyse TrialNet Anti-CD3 Prevention (TN10) data using oral minimal model (OMM)-derived indices to characterise the natural history of stage 2 type 1 diabetes in placebo-treated individuals, to describe early metabolic responses to teplizumab and to explore the predictive capacity of OMM measures for disease-free survival rate. Methods: OMM-estimated insulin secretion, sensitivity and clearance and the disposition index were evaluated at baseline and at 3, 6 and 12 months post randomisation in placebo- and teplizumab-treated groups, and, within each group, in slow- and rapid-progressors (time to stage 3 disease >2 or ≤ 2 years). OMM metrics were also compared with the standard AUC C-peptide. Percentage changes in CD8+ T memory cell and programmed death-1 (PD-1) expression were evaluated in each group. Results: Baseline metabolic characteristics were similar between 28 placebo- and 39 teplizumab-treated participants. Over 12 months, insulin secretion declined in placebo-treated and rose in teplizumab-treated participants. Within groups, placebo slow-progressors (n=14) maintained insulin secretion and sensitivity, while both declined in placebo rapid-progressors (n=14). Teplizumab slow-progressors (n=28) maintained elevated insulin secretion, while teplizumab rapid-progressors (n=11) experienced mild metabolic decline. Compared with rapid-progressor groups, insulin clearance significantly decreased between baseline and 3, 6 and 12 months in the slow-progressor groups in both treatment arms. In aggregate, both higher baseline insulin secretion (p=0.027) and reduced 12 month insulin clearance (p=0.045) predicted slower progression. A >25% loss of insulin secretion at 3 months had specificity of 0.95 (95% CI 0.86, 1.00) to identify rapid-progressors and correctly classified the 2 year risk for progression in 92% of participants, with a sensitivity of 0.19 (95% CI 0.08, 0.30). OMM-estimated insulin secretion outperformed AUC C-peptide to differentiate groups by treatment or to predict progression. Metabolic changes were paralleled by relative frequency of change in PD-1+ CD8+ T effector memory cells. Conclusions/interpretation: OMM measures characterise the metabolic heterogeneity in stage 2 diabetes, identifying differences between rapid- and slow-progressors, and heterogeneous impacts of immunotherapy, suggesting the need to account for these differences when designing and interpreting clinical trials.Item β-Cell Function and Insulin Sensitivity in Youth With Early Type 1 Diabetes From a 2-Hour 7-Sample OGTT(The Endocrine Society, 2023) Galderisi, Alfonso; Evans-Molina, Carmella; Martino, Mariangela; Caprio, Sonia; Cobelli, Claudio; Moran, Antoinette; Pediatrics, School of MedicineContext: The oral minimal model is a widely accepted noninvasive tool to quantify both β-cell responsiveness and insulin sensitivity (SI) from glucose, C-peptide, and insulin concentrations during a 3-hour 9-point oral glucose tolerance test (OGTT). Objective: Here, we aimed to validate a 2-hour 7-point protocol against the 3-hour OGTT and to test how variation in early sampling frequency impacts estimates of β-cell responsiveness and SI. Methods: We conducted a secondary analysis on 15 lean youth with stage 1 type 1 diabetes (T1D; ≥ 2 islet autoantibodies with no dysglycemia) who underwent a 3-hour 9-point OGTT. The oral minimal model was used to quantitate β-cell responsiveness (φtotal) and insulin sensitivity (SI), allowing assessment of β-cell function by the disposition index (DI = φtotal × SI). Seven- and 5-point 2-hour OGTT protocols were tested against the 3-hour 9-point gold standard to determine agreement between estimates of φtotal and its dynamic and static components, SI, and DI across different sampling strategies. Results: The 2-hour estimates for the disposition index exhibited a strong correlation with 3-hour measures (r = 0.975; P < .001) with similar results for β-cell responsiveness and SI (r = 0.997 and r = 0.982; P < .001, respectively). The agreement of the 3 estimates between the 7-point 2-hour and 9-point 3-hour protocols fell within the 95% CI on the Bland-Altman grid with a median difference of 16.9% (-35.3 to 32.5), 0.2% (-0.6 to 1.3), and 14.9% (-1.4 to 28.3) for DI, φtotal, and SI. Conversely, the 5-point protocol did not provide reliable estimates of φ dynamic and static components. Conclusion: The 2-hour 7-point OGTT is reliable in individuals with stage 1 T1D for assessment of β-cell responsiveness, SI, and DI. Incorporation of these analyses into current 2-hour diabetes staging and monitoring OGTTs offers the potential to more accurately quantify risk of progression in the early stages of T1D.