- Browse by Author
Browsing by Author "Gaji, Rajshekhar Y."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Expression of the essential Kinase PfCDPK1 from Plasmodium falciparum in Toxoplasma gondii facilitates the discovery of novel antimalarial drugs(American Society for Microbiology, 2014-05) Gaji, Rajshekhar Y.; Checkley, Lisa; Reese, Michael L.; Ferdig, Michael T.; Arrizabalaga, Gustavo; Pharmacology and Toxicology, School of MedicineWe have previously shown that genetic disruption of Toxoplasma gondii calcium-dependent protein kinase 3 (TgCDPK3) affects calcium ionophore-induced egress. We examined whether Plasmodium falciparum CDPK1 (PfCDPK1), the closest homolog of TgCDPK3 in the malaria parasite P. falciparum, could complement a TgCDPK3 mutant strain. PfCDPK1 is essential and plays critical roles in merozoite development, motility, and secretion. We show that expression of PfCDPK1 in the TgCDPK3 mutant strain rescues the egress defect. This phenotypic complementation requires the localization of PfCDPK1 to the plasma membrane and kinase activity. Interestingly, PfCDPK1-expressing Toxoplasma becomes more sensitive to egress inhibition by purfalcamine, a potent inhibitor of PfCDPK1 with low activity against TgCDPK3. Based on this result, we tested eight small molecules previously determined to inhibit the kinase activity of recombinant PfCDPK1 for their abilities to inhibit ionophore-induced egress in the PfCDPK1-expressing strain. While two of these chemicals did not inhibit egress, we found that six drugs affected this process selectively in PfCDPK1-expressing Toxoplasma. Using mutant versions of PfCDPK1 and TgCDPK3, we show that the selectivities of dasatinib and PLX-4720 are regulated by the gatekeeper residue in the ATP binding site. Importantly, we have confirmed that the three most potent inhibitors of egress in the PfCDPK1-expressing strain effectively kill P. falciparum. Thus, we have established and validated a recombinant strain of Toxoplasma that can be used as a surrogate for the discovery and analysis of PfCDPK1-specific inhibitors that can be developed as antimalarials.Item Phosphorylation of a Myosin Motor by TgCDPK3 Facilitates Rapid Initiation of Motility during Toxoplasma gondii egress(Public Library of Science (PLoS), 2015) Gaji, Rajshekhar Y.; Johnson, Derrick E.; Treeck, Moritz; Wang, Mu; Hudmon, Andy; Arrizabalaga, Gustavo; Department of Pharmacology and Toxicology, IU School of MedicineMembers of the family of calcium dependent protein kinases (CDPK's) are abundant in certain pathogenic parasites and absent in mammalian cells making them strong drug target candidates. In the obligate intracellular parasite Toxoplasma gondii TgCDPK3 is important for calcium dependent egress from the host cell. Nonetheless, the specific substrate through which TgCDPK3 exerts its function during egress remains unknown. To close this knowledge gap we applied the proximity-based protein interaction trap BioID and identified 13 proteins that are either near neighbors or direct interactors of TgCDPK3. Among these was Myosin A (TgMyoA), the unconventional motor protein greatly responsible for driving the gliding motility of this parasite, and whose phosphorylation at serine 21 by an unknown kinase was previously shown to be important for motility and egress. Through a non-biased peptide array approach we determined that TgCDPK3 can specifically phosphorylate serines 21 and 743 of TgMyoA in vitro. Complementation of the TgmyoA null mutant, which exhibits a delay in egress, with TgMyoA in which either S21 or S743 is mutated to alanine failed to rescue the egress defect. Similarly, phosphomimetic mutations in the motor protein overcome the need for TgCDPK3. Moreover, extracellular Tgcdpk3 mutant parasites have motility defects that are complemented by expression of S21+S743 phosphomimetic of TgMyoA. Thus, our studies establish that phosphorylation of TgMyoA by TgCDPK3 is responsible for initiation of motility and parasite egress from the host-cell and provides mechanistic insight into how this unique kinase regulates the lytic cycle of Toxoplasma gondii.