- Browse by Author
Browsing by Author "Gaffin, Jonathan M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Defining and identifying early-onset lung disease in cystic fibrosis with cumulative clinical characteristics(Wiley, 2022) Huang, Leslie; Lai, HuiChuan J.; Antos, Nicholas; Rock, Michael J.; Asfour, Fadi; Howenstine, Michelle; Gaffin, Jonathan M.; Farrell, Philip M.; Pediatrics, School of MedicineBackground: Because of the heterogeneity in cystic fibrosis (CF) lung disease among young children, a clinical method to identify early-onset lung disease is needed. Objective: To develop a CF early-onset lung disease (CFELD) scoring system by utilizing prospectively collected longitudinal data on manifestations in the first 3 years of life. Design: We studied 145 infants born during 2012-2017, diagnosed through newborn screening by age 3 months, and followed to 36 months of age. Cough severity, pulmonary exacerbations (PEx), respiratory cultures, and hospitalizations were collected at each CF center visit (every 1-2 months in infancy and quarterly thereafter). These data were used to construct the CFELD system and to classify lung disease into five categories: asymptomatic, minimal, mild, moderate, and severe. Results: The most frequent manifestation of CF early lung disease was MD-reported PEx episodes, PEx hospitalizations, and positive Pseudomonas aeruginosa cultures. Parent-reported cough severity was correlated with the number of respiratory hospitalizations (r = 0.48, p < 0.0001). The distribution of CFELD categories was 10% asymptomatic, 17% minimal, 29% mild, 33% moderate, and 12% severe. The moderate and severe categories occurred threefold higher in pancreatic insufficient (PI, 49%) versus sufficient subjects (16%), p < 0.0001. In addition to PI, gastrointestinal and nutrition-related hospitalizations, plasma cytokines interleukin (IL)-6 and IL-10, duration of CFTR modulator therapy, and type of health insurance were significant predictors of CFELD scores. Conclusion: The CFELD scoring system is novel, allows systematic evaluation of lung disease prognosis early, and may aid in therapeutic decision-making particularly in the initiation of CFTR modulator therapy.Item Determinants of Lung Function Across Childhood in the Severe Asthma Research Program (SARP) 3(Elsevier, 2023) Gaffin, Jonathan M.; Petty, Carter R.; Sorkness, Ronald L.; Denlinger, Loren C.; Phillips, Brenda R.; Ly, Ngoc P.; Gaston, Benjamin; Ross, Kristie; Fitzpatrick, Anne; Bacharier, Leonard B.; DeBoer, Mark D.; Teague, W. Gerald; Wenzel, Sally E.; Ramratnam, Sima; Israel, Elliot; Mauger, David T.; Phipatanakul, Wanda; National Heart, Lung and Blood Institute’s Severe Asthma Research Program-3 Investigators; Pediatrics, School of MedicineBackground: Children with asthma are at risk for low lung function extending into adulthood, but understanding of clinical predictors is incomplete. Objective: We sought to determine phenotypic factors associated with FEV1 throughout childhood in the Severe Asthma Research Program 3 pediatric cohort. Methods: Lung function was measured at baseline and annually. Multivariate linear mixed-effects models were constructed to assess the effect of baseline and time-varying predictors of prebronchodilator FEV1 at each assessment for up to 6 years. All models were adjusted for age, predicted FEV1 by Global Lung Function Initiative reference equations, race, sex, and height. Secondary outcomes included postbronchodilator FEV1 and prebronchodilator FEV1/forced vital capacity. Results: A total of 862 spirometry assessments were performed for 188 participants. Factors associated with FEV1 include baseline Feno (B, -49 mL/log2 PPB; 95% CI, -92 to -6), response to a characterizing dose of triamcinolone acetonide (B, -8.4 mL/1% change FEV1 posttriamcinolone; 95% CI, -12.3 to -4.5), and maximal bronchodilator reversibility (B, -27 mL/1% change postbronchodilator FEV1; 95% CI, -37 to -16). Annually assessed time-varying factors of age, obesity, and exacerbation frequency predicted FEV1 over time. Notably, there was a significant age and sex interaction. Among girls, there was no exacerbation effect. For boys, however, moderate (1-2) exacerbation frequency in the previous 12 months was associated with -20 mL (95% CI, -39 to -2) FEV1 at each successive year. High exacerbation frequency (≥3) 12 to 24 months before assessment was associated with -34 mL (95% CI, -61 to -7) FEV1 at each successive year. Conclusions: In children with severe and nonsevere asthma, several clinically relevant factors predict FEV1 over time. Boys with recurrent exacerbations are at high risk of lower FEV1 through childhood.Item Geography, generalisability, and susceptibility in clinical trials(Elsevier, 2021) Clougherty, Jane E.; Kinnee, Ellen J.; Cardet, Juan Carlos; Mauger, David; Bacharier, Leonard; Beigelman, Avraham; Blake, Kathryn V.; Cabana, Michael D.; Castro, Mario; Chmiel, James F.; Covar, Ronina; Fitzpatrick, Anne; Gaffin, Jonathan M.; Gentile, Deborah; Israel, Elliot; Jackson, Daniel J.; Kraft, Monica; Krishnan, Jerry A.; Kumar, Harsha Vardhan; Lang, Jason E.; Lazarus, Stephen C.; Lemanske, Robert F.; Lima, John; Martinez, Fernando D.; Morgan, Wayne; Moy, James; Myers, Ross; Naureckas, Edward T.; Ortega, Victor E.; Peters, Stephen P.; Phipatanakul, Wanda; Pongracic, Jacqueline A; Ross, Kristie; Sheehan, William J.; Smith, Lewis J.; Solway, Julian; Sorkness, Christine A.; Wechsler, Michael E.; Wenzel, Sally; White, Steven R.; Holguin, Fernando; Pediatrics, School of MedicineItem The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: an overview of Network organization, procedures and interventions(Elsevier, 2022-02) Georas, Steve N.; Wright, Rosalind J.; Ivanova, Anastasia; Israel, Elliot; LaVange, Lisa M.; Akuthota, Praveen; Carr, Tara F.; Denlinger, Loren C.; Fajt, Merritt L.; Kumar, Rajesh; O’Neal, Wanda K.; Phipatanakul, Wanda; Szefler, Stanley J.; Aronica, Mark A.; Bacharier, Leonard B.; Burbank, Allison J.; Castro, Mario; Alexander, Laura Crotty; Bamdad, Julie; Cardet, Juan Carlos; Comhair, Suzy A. A.; Covar, Ronina A.; DiMango, Emily A.; Erwin, Kim; Erzurum, Serpil C.; Fahy, John V.; Gaffin, Jonathan M.; Gaston, Benjamin; Gerald, Lynn B.; Hoffman, Eric A.; Holguin, Fernando; Jackson, Daniel J.; James, John; Jarjour, Nizar N.; Kenyon, Nicholas J.; Khatri, Sumita; Kirwan, John P.; Kraft, Monica; Krishnan, Jerry A.; Liu, Andrew H.; Liu, Mark C.; Marquis, M. Alison; Martinez, Fernando; Mey, Jacob; Moore, Wendy C.; Moy, James N.; Ortega, Victor E.; Peden, David B.; Pennington, Emily; Peters, Michael C.; Ross, Kristie; Sanchez, Maria; Smith, Lewis J.; Sorkness, Ronald L.; Wechsler, Michael E.; Wenzel, Sally E.; White, Steven R.; Zein, Joe; Zeki, Amir A.; Noel, Patricia; Pediatrics, School of MedicineAsthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here we describe the Precision Interventions for Severe and/or Exacerbation Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the U.S. The PrecISE Network was designed to conduct phase II/proof of concept clinical trials of precision interventions in the severe asthma population, and is supported by the National Heart Lung and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the Network will evaluate up to six interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for of severe asthma.Item Preventing asthma in high risk kids (PARK) with omalizumab: Design, rationale, methods, lessons learned and adaptation(Elsevier, 2021-01) Phipatanakul, Wanda; Mauger, David T.; Guilbert, Theresa W.; Bacharier, Leonard B.; Durrani, Sandy; Jackson, Daniel J.; Martinez, Fernando D.; Fitzpatrick, Anne M.; Cunningham, Amparito; Kunselman, Susan; Wheatley, Lisa M.; Bauer, Cindy; Davis, Carla M.; Geng, Bob; Kloepfer, Kirsten M.; Lapin, Craig; Liu, Andrew H.; Pongracic, Jacqueline A.; Teach, Stephen J.; Chmiel, James; Gaffin, Jonathan M.; Greenhawt, Matthew; Gupta, Meera R.; Lai, Peggy S.; Lemanske, Robert F.; Morgan, Wayne J.; Sheehan, William J.; Stokes, Jeffrey; Thorne, Peter S.; Oettgen, Hans C.; Israel, Elliot; Pediatrics, School of MedicineAsthma remains one of the most important challenges to pediatric public health in the US. A large majority of children with persistent and chronic asthma demonstrate aeroallergen sensitization, which remains a pivotal risk factor associated with the development of persistent, progressive asthma throughout life. In individuals with a tendency toward Type 2 inflammation, sensitization and exposure to high concentrations of offending allergens is associated with increased risk for development of, and impairment from, asthma. The cascade of biological responses to allergens is primarily mediated through IgE antibodies and their production is further stimulated by IgE responses to antigen exposure. In addition, circulating IgE impairs innate anti-viral immune responses. The latter effect could magnify the effects of another early life exposure associated with increased risk of the development of asthma – viral infections. Omalizumab binds to circulating IgE and thus ablates antigen signaling through IgE-related mechanisms. Further, it has been shown restore IFN-α response to rhinovirus and to reduce asthma exacerbations during the viral season. We therefore hypothesized that early blockade of IgE and IgE mediated responses with omalizumab would prevent the development and reduce the severity of asthma in those at high risk for developing asthma. Herein, we describe a double-blind, placebo-controlled trial of omalizumab in 2–3 year old children at high risk for development of asthma to prevent the development and reduce the severity of asthma. We describe the rationale, methods, and lessons learned in implementing this potentially transformative trial aimed at prevention of asthma.Item Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma(American Thoracic Society, 2021) Denlinger, Loren C.; Phillips, Brenda R.; Sorkness, Ronald L.; Bleecker, Eugene R.; Castro, Mario; DeBoer, Mark D.; Fitzpatrick, Anne M.; Hastie, Annette T.; Gaffin, Jonathan M.; Moore, Wendy C.; Peters, Michael C.; Peters, Stephen P.; Phipatanakul, Wanda; Cardet, Juan Carlos; Erzurum, Serpil C.; Fahy, John V.; Fajt, Merritt L.; Gaston, Benjamin; Levy, Bruce D.; Meyers, Deborah A.; Ross, Kristie; Teague, W. Gerald; Wenzel, Sally E.; Woodruff, Prescott G.; Zein, Joe; Jarjour, Nizar N.; Mauger, David T.; Israel, Elliot; Pediatrics, School of MedicineRationale: It is unclear why select patients with moderate-to-severe asthma continue to lose lung function despite therapy. We hypothesized that participants with the smallest responses to parenteral corticosteroids have the greatest risk of undergoing a severe decline in lung function. Objectives: To evaluate corticosteroid-response phenotypes as longitudinal predictors of lung decline. Methods: Adults within the NHLBI SARP III (Severe Asthma Research Program III) who had undergone a course of intramuscular triamcinolone at baseline and at ≥2 annual follow-up visits were evaluated. Longitudinal slopes were calculated for each participant’s post-bronchodilator FEV1% predicted. Categories of participant FEV1 slope were defined: severe decline, >2% loss/yr; mild decline, >0.5–2.0% loss/yr; no change, 0.5% loss/yr to <1% gain/yr; and improvement, ≥1% gain/yr. Regression models were used to develop predictors of severe decline. Measurements and Main Results: Of 396 participants, 78 had severe decline, 91 had mild decline, 114 had no change, and 113 showed improvement. The triamcinolone-induced difference in the post-bronchodilator FEV1% predicted (derived by baseline subtraction) was related to the 4-year change in lung function or slope category in univariable models (P < 0.001). For each 5% decrement in the triamcinolone-induced difference the FEV1% predicted, there was a 50% increase in the odds of being in the severe decline group (odds ratio, 1.5; 95% confidence interval, 1.3–1.8), when adjusted for baseline FEV1, exacerbation history, blood eosinophils and body mass index. Conclusions: Failure to improve the post-bronchodilator FEV1 after a challenge with parenteral corticosteroids is an evoked biomarker for patients at risk for a severe decline in lung function.