- Browse by Author
Browsing by Author "Furdui, Cristina M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Multi-Omics Analysis of Brain Metastasis Outcomes Following Craniotomy(Frontiers Media, 2021-04-06) Su, Jing; Song, Qianqian; Qasem, Shadi; O’Neill, Stacey; Lee, Jingyun; Furdui, Cristina M.; Pasche, Boris; Metheny-Barlow, Linda; Masters, Adrianna H.; Lo, Hui-Wen; Xing, Fei; Watabe, Kounosuke; Miller, Lance D.; Tatter, Stephen B.; Laxton, Adrian W.; Whitlow, Christopher T.; Chan, Michael D.; Soike, Michael H.; Ruiz, Jimmy; Biostatistics, School of Public HealthBackground: The incidence of brain metastasis continues to increase as therapeutic strategies have improved for a number of solid tumors. The presence of brain metastasis is associated with worse prognosis but it is unclear if distinctive biomarkers can separate patients at risk for CNS related death. Methods: We executed a single institution retrospective collection of brain metastasis from patients who were diagnosed with lung, breast, and other primary tumors. The brain metastatic samples were sent for RNA sequencing, proteomic and metabolomic analysis of brain metastasis. The primary outcome was distant brain failure after definitive therapies that included craniotomy resection and radiation to surgical bed. Novel prognostic subtypes were discovered using transcriptomic data and sparse non-negative matrix factorization. Results: We discovered two molecular subtypes showing statistically significant differential prognosis irrespective of tumor subtype. The median survival time of the good and the poor prognostic subtypes were 7.89 and 42.27 months, respectively. Further integrated characterization and analysis of these two distinctive prognostic subtypes using transcriptomic, proteomic, and metabolomic molecular profiles of patients identified key pathways and metabolites. The analysis suggested that immune microenvironment landscape as well as proliferation and migration signaling pathways may be responsible to the observed survival difference. Conclusion: A multi-omics approach to characterization of brain metastasis provides an opportunity to identify clinically impactful biomarkers and associated prognostic subtypes and generate provocative integrative understanding of disease.Item Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors(Cell Press, 2021) Lewis, Joshua E.; Forshaw, Tom E.; Boothman, David A.; Furdui, Cristina M.; Kemp, Melissa L.; Biochemistry and Molecular Biology, School of MedicineRedox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.Item Targeting NAD+ Metabolism to Enhance Radiation Therapy Responses(Elsevier, 2019-01) Lewis, Joshua E.; Singh, Naveen; Holmila, Reetta J.; Sumer, Baran D.; Williams, Noelle S.; Furdui, Cristina M.; Kemp, Melissa L.; Boothman, David A.; Biochemistry and Molecular Biology, School of MedicineNicotinamide adenine dinucleotide (NAD+) metabolism is integrally connected with the mechanisms of action of radiation therapy and is altered in many radiation-resistant tumors. This makes NAD+ metabolism an ideal target for therapies that increase radiation sensitivity and improve patient outcomes. This review provides an overview of NAD+ metabolism in the context of the cellular response to ionizing radiation, as well as current therapies that target NAD+ metabolism to enhance radiation therapy responses. Additionally, we summarize state-of-the-art methods for measuring, modeling, and manipulating NAD+ metabolism, which are being used to identify novel targets in the NAD+ metabolic network for therapeutic interventions in combination with radiation therapy.Item The fatty acid elongase ELOVL6 regulates bortezomib resistance in multiple myeloma(American Society of Hematology, 2021) Lipchick, Brittany C.; Utley, Adam; Han, Zhannan; Moparthy, Sudha; Yun, Dong Hyun; Bianchi-Smiraglia, Anna; Wolff, David W.; Fink, Emily; Liu, Liang; Furdui, Cristina M.; Lee, Jingyun; Lee, Kelvin P.; Nikiforov, Mikhail A.; Medicine, School of MedicineResistance to the proteasome inhibitor bortezomib (BTZ) represents a major obstacle in the treatment of multiple myeloma (MM). The contribution of lipid metabolism in the resistance of MM cells to BTZ is mostly unknown. Here we report that levels of fatty acid elongase 6 (ELOVL6) were lower in MM cells from BTZ-nonresponsive vs BTZ-responsive patients and in cultured MM cells selected for BTZ resistance compared with parental counterparts. Accordingly, depletion of ELOVL6 in parental MM cells suppressed BTZ-induced endoplasmic reticulum (ER) stress and cytotoxicity, whereas restoration of ELOVL6 levels in BTZ-resistant MM cells sensitized them to BTZ in tissue culture settings and, as xenografts, in a plasmacytoma mouse model. Furthermore, for the first time, we identified changes in the BTZ-induced lipidome between parental and BTZ-resistant MM cell lines underlying a functional difference in their response to BTZ. We demonstrated that restoration of ELOVL6 levels in BTZ-resistant MM cells resensitized them to BTZ largely via upregulation of ELOVL6-dependent ceramide species, which was a prerequisite for BTZ-induced ER stress and cell death in these cells. Our data characterize ELOVL6 as a major clinically relevant regulator of MM cell resistance to BTZ, which can emerge from the impaired ability of these cells to alter ceramide composition in response to BTZ.