ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fujiwara, Hideaki"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    ATG5-Dependent Autophagy Uncouples T-cell Proliferative and Effector Functions and Separates Graft-versus-Host Disease from Graft-versus-Leukemia
    (American Association for Cancer Research, 2021) Oravecz-Wilson, Katherine; Rossi, Corinne; Zajac, Cynthia; Sun, Yaping; Li, Lu; Decoville, Thomas; Fujiwara, Hideaki; Kim, Stephanie; Peltier, Daniel; Reddy, Pavan; Medicine, School of Medicine
    Autophagy is a vital cellular process whose role in T immune cells is poorly understood, specifically, in its regulation of allo-immunity. Stimulation of wild-type T cells in vitro and in vivo with allo-antigens enhances autophagy. To assess the relevance of autophagy to T-cell allo-immunity, we generated T-cell-specific Atg5 knock-out mice. Deficiency of ATG5-dependent autophagy reduced T-cell proliferation and increased apoptosis following in vitro and in vivo allo-stimulation. The absence of ATG5 in allo-stimulated T cells enhanced their ability to release effector cytokines and cytotoxic functions, uncoupling their proliferation and effector functions. Absence of autophagy reduced intracellular degradation of cytotoxic enzymes such as granzyme B, thus enhancing the cytotoxicity of T cells. In several in vivo models of allo-HSCT, ATG5-dependent dissociation of T-cell functions contributed to significant reduction in graft-versus-host disease (GVHD) but retained sufficient graft versus tumor (GVT) response. Our findings demonstrate that ATG5-dependent autophagy uncouples T-cell proliferation from its effector functions and offers a potential new strategy to enhance outcomes after allo-HSCT. SIGNIFICANCE: These findings demonstrate that induction of autophagy in donor T-cell promotes GVHD, while inhibition of T-cell autophagy mitigates GVHD without substantial loss of GVL responses.
  • Loading...
    Thumbnail Image
    Item
    Mitochondrial Complex II In Intestinal Epithelial Cells Regulates T-cell Mediated Immunopathology
    (Springer Nature, 2021) Fujiwara, Hideaki; Seike, Keisuke; Brooks, Michael D.; Mathew, Anna V.; Kovalenko, Ilya; Pal, Anupama; Lee, Ho-Joon; Peltier, Daniel; Kim, Stephanie; Liu, Chen; Oravecz-Wilson, Katherine; Li, Lu; Sun, Yaping; Byun, Jaeman; Maeda, Yoshinobu; Wicha, Max S.; Saunders, Tom; Rehemtulla, Alnawaz; Lyssiotis, Costas A.; Pennathur, Subramaniam; Reddy, Pavan; Microbiology and Immunology, School of Medicine
    Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease (GVHD), inflammatory bowel disease (IBD) and immune checkpoint blockade (ICB) mediated colitis. But little is known about the target cell intrinsic features that influence disease severity. Herein we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses identified disruption of IEC intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC specific mitochondrial complex II component SDHA in the regulation of the severity of T cell mediated intestinal diseases.
  • Loading...
    Thumbnail Image
    Item
    Oral inflammation and microbiome dysbiosis exacerbate chronic graft-versus-host disease
    (American Society of Hematology, 2025) Kambara, Yui; Fujiwara, Hideaki; Yamamoto, Akira; Gotoh, Kazuyoshi; Tsuji, Shuma; Kunihiro, Mari; Oyama, Tadashi; Terao, Toshiki; Sato, Ayame; Tanaka, Takehiro; Peltier, Daniel; Seike, Keisuke; Nishimori, Hisakazu; Asada, Noboru; Ennishi, Daisuke; Fujii, Keiko; Fujii, Nobuharu; Matsuoka, Ken-Ichi; Soga, Yoshihiko; Reddy, Pavan; Maeda, Yoshinobu; Pediatrics, School of Medicine
    The oral microbiota, second in abundance to the gut, is implicated in chronic systemic diseases, but its specific role in graft-versus-host disease (GVHD) pathogenesis has been unclear. Our study finds that mucositis-induced oral dysbiosis in patients after hematopoietic cell transplantation (HCT) associated with increased chronic GVHD (cGVHD), even in patients receiving posttransplant cyclophosphamide. In murine HCT models, oral dysbiosis caused by bilateral molar ligatures exacerbated cGVHD and increased bacterial load in the oral cavity and gut, with Enterococcaceae significantly increasing in both organs. In this model, the migration of Enterococcaceae to cervical lymph nodes both before and after transplantation activated antigen-presenting cells, thereby promoting the expansion of donor-derived inflammatory T cells. Based on these results, we hypothesize that pathogenic bacteria increase in the oral cavity might not only exacerbate local inflammation but also enhance systemic inflammation throughout the HCT course. Additionally, these bacteria translocated to the gut and formed ectopic colonies, further amplifying systemic inflammation. Furthermore, interventions targeting the oral microbiome mitigated murine cGVHD. Collectively, our findings highlight the importance of oral dysbiosis in cGVHD and suggest that modulation of the oral microbiome during transplantation may be an effective approach for preventing or treating cGVHD.
  • Loading...
    Thumbnail Image
    Item
    RNA-seq of Human T Cells after Hematopoietic Stem Cell Transplantation Identifies Linc00402 as a Regulator of T-Cell Alloimmunity
    (American Association for the Advancement of Science, 2021) Peltier, Daniel; Radosevich, Molly; Ravikumar, Visweswaran; Pitchiaya, Sethuramasundaram; Decoville, Thomas; Wood, Sherri C.; Hou, Guoqing; Zajac, Cynthia; Oravecz-Wilson, Katherine; Sokol, David; Henig, Israel; Wu, Julia; Kim, Stephanie; Taylor, Austin; Fujiwara, Hideaki; Sun, Yaping; Rao, Arvind; Chinnaiyan, Arul M.; Goldstein, Daniel R.; Reddy, Pavan; Pediatrics, School of Medicine
    Mechanisms governing allogeneic T cell responses after solid organ and allogeneic hematopoietic stem cell transplantation (HSCT) are incompletely understood. To identify lncRNAs that regulate human donor T cells after clinical HSCT, we performed RNA sequencing on T cells from healthy individuals and donor T cells from three different groups of HSCT recipients that differed in their degree of major histocompatibility complex (MHC) mismatch. We found that lncRNA differential expression was greatest in T cells after MHC-mismatched HSCT relative to T cells after either MHC-matched or autologous HSCT. Differential expression was validated in an independent patient cohort and in mixed lymphocyte reactions using ex vivo healthy human T cells. We identified Linc00402, an uncharacterized lncRNA, among the lncRNAs differentially expressed between the mismatched unrelated and matched unrelated donor T cells. We found that Linc00402 was conserved and exhibited an 88-fold increase in human T cells relative to all other samples in the FANTOM5 database. Linc00402 was also increased in donor T cells from patients who underwent allogeneic cardiac transplantation and in murine T cells. Linc00402 was reduced in patients who subsequently developed acute graft-versus-host disease. Linc00402 enhanced the activity of ERK1 and ERK2, increased FOS nuclear accumulation, and augmented expression of interleukin-2 and Egr-1 after T cell receptor engagement. Functionally, Linc00402 augmented the T cell proliferative response to an allogeneic stimulus but not to a nominal ovalbumin peptide antigen or polyclonal anti-CD3/CD28 stimulus. Thus, our studies identified Linc00402 as a regulator of allogeneic T cell function.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University