ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Frolenkov, Gregory I."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Myosin Nanomotor Essential for Stereocilia Maintenance Exp 1 ands the Etiology of 2 Hereditary Hearing Loss DFNB3
    (bioRxiv, 2025-02-21) Behnammanesh, Ghazaleh; Dragich, Abigail K.; Liao, Xiayi; Hadi, Shadan; Kim, Mi-Jung; Perrin, Benjamin; Someya, Shinichi; Frolenkov, Gregory I.; Bird, Jonathan E.; Biology, School of Science
    Cochlear hair cells transduce sound using stereocilia, and disruption to these delicate mechanosensors is a significant cause of hearing loss. Stereocilia architecture is dependent upon the nanomotor myosin 15. A short isoform (MYO15A-2) drives stereocilia development by delivering an elongation-promoting complex (EC) to stereocilia tips, and an alternatively spliced long isoform (MYO15A-1) tunes postnatal size in shorter stereocilia, which possess mechanosensitive ion channels. Disruption of these functions causes two distinct stereocilia pathologies, which underly human autosomal recessive non-syndromic hearing loss DFNB3. Here, we characterize a new isoform, MYO15A-3, that increases expression in postnatal hair cells as the developmental MYO15A-2 isoform wanes reciprocally. We show the critical EC complex is initially delivered by MYO15A-2, followed by a postnatal handover to MYO15A-3, which continues to deliver the EC. In a Myo15a-3 mutant mouse, stereocilia develop normally with correct EC targeting, but lack the EC postnatally and do not maintain their adult architecture, leading to progressive hearing loss. We conclude MYO15A-3 delivers the EC in postnatal hair cells and that the EC and MYO15A-3 are both required to maintain stereocilia integrity. Our results add to the spectrum of stereocilia pathology underlying DFNB3 hearing loss and reveal new molecular mechanisms necessary for resilient hearing during adult life.
  • Loading...
    Thumbnail Image
    Item
    Generating high-fidelity cochlear organoids from human pluripotent stem cells
    (Elsevier, 2023) Moore, Stephen T.; Nakamura, Takashi; Nie, Jing; Solivais, Alexander J.; Aristizábal-Ramírez, Isabel; Ueda, Yoshitomo; Manikandan, Mayakannan; Reddy, V. Shweta; Romano, Daniel R.; Hoffman, John R.; Perrin, Benjamin J.; Nelson, Rick F.; Frolenkov, Gregory I.; Chuva de Sousa Lopes, Susana M.; Hashino, Eri; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Mechanosensitive hair cells in the cochlea are responsible for hearing but are vulnerable to damage by genetic mutations and environmental insults. The paucity of human cochlear tissues makes it difficult to study cochlear hair cells. Organoids offer a compelling platform to study scarce tissues in vitro; however, derivation of cochlear cell types has proven non-trivial. Here, using 3D cultures of human pluripotent stem cells, we sought to replicate key differentiation cues of cochlear specification. We found that timed modulations of Sonic Hedgehog and WNT signaling promote ventral gene expression in otic progenitors. Ventralized otic progenitors subsequently give rise to elaborately patterned epithelia containing hair cells with morphology, marker expression, and functional properties consistent with both outer and inner hair cells in the cochlea. These results suggest that early morphogenic cues are sufficient to drive cochlear induction and establish an unprecedented system to model the human auditory organ.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University