- Browse by Author
Browsing by Author "Fries, Dietmar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Hemorrhagic Resuscitation Guided by Viscoelastography in Far-Forward Combat and Austere Civilian Environments: Goal-Directed Whole-Blood and Blood-Component Therapy Far from the Trauma Center(MDPI, 2022-01-12) Lantry, James H.; Mason, Phillip; Logsdon, Matthew G.; Bunch, Connor M.; Peck, Ethan E.; Moore, Ernest E.; Moore, Hunter B.; Neal, Matthew D.; Thomas, Scott G.; Khan, Rashid Z.; Gillespie, Laura; Florance, Charles; Korzan, Josh; Preuss, Fletcher R.; Mason, Dan; Saleh, Tarek; Marsee, Mathew K.; Vande Lune, Stefani; Ayoub, Qamarnisa; Fries, Dietmar; Walsh, Mark M.; Emergency Medicine, School of MedicineModern approaches to resuscitation seek to bring patient interventions as close as possible to the initial trauma. In recent decades, fresh or cold-stored whole blood has gained widespread support in multiple settings as the best first agent in resuscitation after massive blood loss. However, whole blood is not a panacea, and while current guidelines promote continued resuscitation with fixed ratios of blood products, the debate about the optimal resuscitation strategy-especially in austere or challenging environments-is by no means settled. In this narrative review, we give a brief history of military resuscitation and how whole blood became the mainstay of initial resuscitation. We then outline the principles of viscoelastic hemostatic assays as well as their adoption for providing goal-directed blood-component therapy in trauma centers. After summarizing the nascent research on the strengths and limitations of viscoelastic platforms in challenging environmental conditions, we conclude with our vision of how these platforms can be deployed in far-forward combat and austere civilian environments to maximize survival.Item Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices(MDPI, 2022-02-07) Volod, Oksana; Bunch, Connor M.; Zackariya, Nuha; Moore, Ernest E.; Moore, Hunter B.; Kwaan, Hau C.; Neal, Matthew D.; Al-Fadhl, Mahmoud D.; Patel, Shivani S.; Wiarda, Grant; Al-Fadhl, Hamid D.; McCoy, Max L.; Thomas, Anthony V.; Thomas, Scott G.; Gillespie, Laura; Khan, Rashid Z.; Zamlut, Mahmud; Kamphues, Peter; Fries, Dietmar; Walsh, Mark M.; Medicine, School of MedicineViscoelastic hemostatic assay (VHAs) are whole blood point-of-care tests that have become an essential method for assaying hemostatic competence in liver transplantation, cardiac surgery, and most recently, trauma surgery involving hemorrhagic shock. It has taken more than three-quarters of a century of research and clinical application for this technology to become mainstream in these three clinical areas. Within the last decade, the cup and pin legacy devices, such as thromboelastography (TEG® 5000) and rotational thromboelastometry (ROTEM® delta), have been supplanted not only by cartridge systems (TEG® 6S and ROTEM® sigma), but also by more portable point-of-care bedside testing iterations of these legacy devices (e.g., Sonoclot®, Quantra®, and ClotPro®). Here, the legacy and new generation VHAs are compared on the basis of their unique hemostatic parameters that define contributions of coagulation factors, fibrinogen/fibrin, platelets, and clot lysis as related to the lifespan of a clot. In conclusion, we offer a brief discussion on the meteoric adoption of VHAs across the medical and surgical specialties to address COVID-19-associated coagulopathy.