- Browse by Author
Browsing by Author "Foster, James A."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item A Comparative Experimental and Computational Study on the Nature of the Pangolin-CoV and COVID-19 Omicron(MDPI, 2024-07-09) Wei, Lai; Song, Lihua; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Goh, Gerard Kian-Meng; Biochemistry and Molecular Biology, School of MedicineThe relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have an abnormally hard outer shell (low M disorder, i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far has been found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2, especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 and later in Omicron, is associated with attenuation according to the Shell-Disorder Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.Item A Study on the Nature of SARS-CoV-2 Using the Shell Disorder Models: Reproducibility, Evolution, Spread, and Attenuation(MDPI, 2022-09-23) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineThe basic tenets of the shell disorder model (SDM) as applied to COVID-19 are that the harder outer shell of the virus shell (lower PID-percentage of intrinsic disorder-of the membrane protein M, PIDM) and higher flexibility of the inner shell (higher PID of the nucleocapsid protein N, PIDN) are correlated with the contagiousness and virulence, respectively. M protects the virion from the anti-microbial enzymes in the saliva and mucus. N disorder is associated with the rapid replication of the virus. SDM predictions are supported by two experimental observations. The first observation demonstrated lesser and greater presence of the Omicron particles in the lungs and bronchial tissues, respectively, as there is a greater level of mucus in the bronchi. The other observation revealed that there are lower viral loads in 2017-pangolin-CoV, which is predicted to have similarly low PIDN as Omicron. The abnormally hard M, which is very rarely seen in coronaviruses, arose from the fecal-oral behaviors of pangolins via exposure to buried feces. Pangolins provide an environment for coronavirus (CoV) attenuation, which is seen in Omicron. Phylogenetic study using M shows that COVID-19-related bat-CoVs from Laos and Omicron are clustered in close proximity to pangolin-CoVs, which suggests the recurrence of interspecies transmissions. Hard M may have implications for long COVID-19, with immune systems having difficulty degrading viral proteins/particles.Item Feasibility of the vaccine development for SARS-CoV-2 and other viruses using the shell disorder analysis(World Scientific, 2020-11) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineSeveral related viral shell disorder (disorder of shell proteins of viruses) models were built using a disorder predictor via AI. The parent model detected the presence of high levels of disorder at the outer shell in viruses, for which vaccines are not available. Another model found correlations between inner shell disorder and viral virulence. A third model was able to positively correlate the levels of respiratory transmission of coronaviruses (CoVs). These models are linked together by the fact that they have uncovered two novel immune evading strategies employed by the various viruses. The first involve the use of highly disordered “shape-shifting” outer shell to prevent antibodies from binding tightly to the virus thus leading to vaccine failure. The second usually involves a more disordered inner shell that provides for more efficient binding in the rapid replication of viral particles before any host immune response. This “Trojan horse” immune evasion often backfires on the virus, when the viral load becomes too great at a vital organ, which leads to death of the host. Just as such virulence entails the viral load to exceed at a vital organ, a minimal viral load in the saliva/mucus is necessary for respiratory transmission to be feasible. As for the SARS-CoV-2, no high levels of disorder can be detected at the outer shell membrane (M) protein, but some evidence of correlation between virulence and inner shell (nucleocapsid, N) disorder has been observed. This suggests that not only the development of vaccine for SARS-CoV-2, unlike HIV, HSV and HCV, is feasible but its attenuated vaccine strain can either be found in nature or generated by genetically modifying N.Item HIV Vaccine Mystery and Viral Shell Disorder(MDPI, 2019-05) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; BioHealth Informatics, School of Informatics and ComputingHundreds of billions of dollars have been spent for over three decades in the search for an effective human immunodeficiency virus (HIV) vaccine with no success. There are also at least two other sexually transmitted viruses, for which no vaccine is available, the herpes simplex virus (HSV) and the hepatitis C virus (HCV). Traditional textbook explanatory paradigm of rapid mutation of retroviruses cannot adequately address the unavailability of vaccine for many sexually transmissible viruses, since HSV and HCV are DNA and non-retroviral RNA viruses, respectively, whereas effective vaccine for the horsefly-transmitted retroviral cousin of HIV, equine infectious anemia virus (EIAV), was found in 1973. We reported earlier the highly disordered nature of proteins in outer shells of the HIV, HCV, and HSV. Such levels of disorder are completely absent among the classical viruses, such as smallpox, rabies, yellow fever, and polio viruses, for which efficient vaccines were discovered. This review analyzes the physiology and shell disorder of the various related and non-related viruses to argue that EIAV and the classical viruses need harder shells to survive during harsher conditions of non-sexual transmissions, thus making them vulnerable to antibody detection and neutralization. In contrast, the outer shell of the HIV-1 (with its preferential sexual transmission) is highly disordered, thereby allowing large scale motions of its surface glycoproteins and making it difficult for antibodies to bind to them. The theoretical underpinning of this concept is retrospectively traced to a classical 1920s experiment by the legendary scientist, Oswald Avery. This concept of viral shapeshifting has implications for improved treatment of cancer and infections via immune evasion.Item Nipah shell disorder, modes of infection, and virulence(Elsevier, 2020) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineThe Nipah Virus (NiV) was first isolated during a 1998–9 outbreak in Malaysia. The outbreak initially infected farm pigs and then moved to humans from pigs with a case-fatality rate (CFR) of about 40%. After 2001, regular outbreaks occurred with higher CFRs (~71%, 2001–5, ~93%, 2008–12). The spread arose from drinking virus-laden palm date sap and human-to-human transmission. Intrinsic disorder analysis revealed strong correlation between the percentage of disorder in the N protein and CFR (Regression: r2 = 0.93, p < 0.01, ANOVA: p < 0.01). Distinct disorder and, therefore, genetic differences can be found in all three group of strains. The fact that the transmission modes of the Malaysia strain are different from those of the Bangladesh strains suggests that the correlations may also be linked to the modes of viral transmission. Analysis of the NiV and related viruses suggests links between modes of transmission and disorder of not just the N protein but, also, of M shell protein. The links among shell disorder, transmission modes, and virulence suggest mechanisms by which viruses are attenuated as they passed through different cell hosts from different animal species. These have implications for development of vaccines and epidemiological molecular analytical tools to contain outbreaks.Item A Novel Strategy for the Development of Vaccines for SARS-CoV-2 (COVID-19) and Other Viruses Using AI and Viral Shell Disorder(ACS, 2020-11-06) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineA model that predicts levels of coronavirus (CoV) respiratory and fecal–oral transmission potentials based on the shell disorder has been built using neural network (artificial intelligence, AI) analysis of the percentage of disorder (PID) in the nucleocapsid, N, and membrane, M, proteins of the inner and outer viral shells, respectively. Using primarily the PID of N, SARS-CoV-2 is grouped as having intermediate levels of both respiratory and fecal–oral transmission potentials. Related studies, using similar methodologies, have found strong positive correlations between virulence and inner shell disorder among numerous viruses, including Nipah, Ebola, and Dengue viruses. There is some evidence that this is also true for SARS-CoV-2 and SARS-CoV, which have N PIDs of 48% and 50%, and case-fatality rates of 0.5–5% and 10.9%, respectively. The underlying relationship between virulence and respiratory potentials has to do with the viral loads of vital organs and body fluids, respectively. Viruses can spread by respiratory means only if the viral loads in saliva and mucus exceed certain minima. Similarly, a patient is likelier to die when the viral load overwhelms vital organs. Greater disorder in inner shell proteins has been known to play important roles in the rapid replication of viruses by enhancing the efficiency pertaining to protein–protein/DNA/RNA/lipid bindings. This paper suggests a novel strategy in attenuating viruses involving comparison of disorder patterns of inner shells (N) of related viruses to identify residues and regions that could be ideal for mutation. The M protein of SARS-CoV-2 has one of the lowest M PID values (6%) in its family, and therefore, this virus has one of the hardest outer shells, which makes it resistant to antimicrobial enzymes in body fluid. While this is likely responsible for its greater contagiousness, the risks of creating an attenuated virus with a more disordered M are discussed.Item Rigidity of the Outer Shell Predicted by a Protein Intrinsic Disorder Model Sheds Light on the COVID-19 (Wuhan-2019-nCoV) Infectivity(MDPI, 2020-02-19) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladmir N.; Biochemistry and Molecular Biology, School of MedicineThe world is currently witnessing an outbreak of a new coronavirus spreading quickly across China and affecting at least 24 other countries. With almost 65,000 infected, a worldwide death toll of at least 1370 (as of 14 February 2020), and with the potential to affect up to two-thirds of the world population, COVID-19 is considered by the World Health Organization (WHO) to be a global health emergency. The speed of spread and infectivity of COVID-19 (also known as Wuhan-2019-nCoV) are dramatically exceeding those of the Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). In fact, since September 2012, the WHO has been notified of 2494 laboratory-confirmed cases of infection with MERS-CoV, whereas the 2002–2003 epidemic of SARS affected 26 countries and resulted in more than 8000 cases. Therefore, although SARS, MERS, and COVID-19 are all the result of coronaviral infections, the causes of the coronaviruses differ dramatically in their transmissibility. It is likely that these differences in infectivity of coronaviruses can be attributed to the differences in the rigidity of their shells which can be evaluated using computational tools for predicting intrinsic disorder predisposition of the corresponding viral proteins.Item Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids(Elsevier, 2020-07) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineThe coronavirus (CoV) family consists of viruses that infects a variety of animals including humans with various levels of respiratory and fecal-oral transmission levels depending on the behavior of the viruses' natural hosts and optimal viral fitness. A model to classify and predict the levels of respective respiratory and fecal-oral transmission potentials of the various viruses was built before the outbreak of MERS-CoV using AI and empirically-based molecular tools to predict the disorder level of proteins. Using the percentages of intrinsic disorder (PID) of the nucleocapsid (N) and membrane (M) proteins of CoV, the model easily clustered the viruses into three groups with the SARS-CoV (M PID = 8%, N PID = 50%) falling into Category B, in which viruses have intermediate levels of both respiratory and fecal-oral transmission potentials. Later, MERS-CoV (M PID = 9%, N PID = 44%) was found to be in Category C, which consists of viruses with lower respiratory transmission potential but with higher fecal-oral transmission capabilities. Based on the peculiarities of disorder distribution, the SARS-CoV-2 (M PID = 6%, N PID = 48%) has to be placed in Category B. Our data show however, that the SARS-CoV-2 is very strange with one of the hardest protective outer shell, (M PID = 6%) among coronaviruses. This means that it might be expected to be highly resilient in saliva or other body fluids and outside the body. An infected body is likelier to shed greater numbers of viral particles since the latter is more resistant to antimicrobial enzymes in body fluids. These particles are also likelier to remain active longer. These factors could account for the greater contagiousness of the SARS-CoV-2 and have implications for efforts to prevent its spread.Item Shell Disorder Analysis Suggests That Pangolins Offered a Window for a Silent Spread of an Attenuated SARS-CoV-2 Precursor among Humans(2020-06-28) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineA model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. Application of this model to the 2003 SARS-CoV indicated that this virus with MPID = 8.6% and NPID = 50.2% falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. This shell hardness is believed to be responsible for high viral loads in the mucus and saliva making it more contagious than SARS-CoV. The hard shell is able to resist the anti-microbial enzymes in body fluids. Further searches have found that high rigidity of outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017-19 reveals that these animals provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in the similarity of shell disorder and genetic proximity of the pangolin-CoVs to SARS-CoV-2 (~90%). A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder analysis also revealed that lower inner shell disorder is associated with the lesser virulence in a variety of viruses.Item Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of theWuhan-Hu-1 SARS-CoV-2(MDPI, 2022-04-25) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineBefore the SARS-CoV-2 Omicron variant emergence, shell disorder models (SDM) suggested that an attenuated precursor from pangolins may have entered humans in 2017 or earlier. This was based on a shell disorder analysis of SARS-CoV-1/2 and pangolin-Cov-2017. The SDM suggests that Omicron is attenuated with almost identical N (inner shell) disorder as pangolin-CoV-2017 (N-PID (percentage of intrinsic disorder): 44.8% vs. 44.9%—lower than other variants). The outer shell disorder (M-PID) of Omicron is lower than that of other variants and pangolin-CoV-2017 (5.4% vs. 5.9%). COVID-19-related CoVs have the lowest M-PIDs (hardest outer shell) among all CoVs. This is likely to be responsible for the higher contagiousness of SARS-CoV-2 and Omicron, since hard outer shell protects the virion from salivary/mucosal antimicrobial enzymes. Phylogenetic study using M reveals that Omicron branched off from an ancestor of the Wuhan-Hu-1 strain closely related to pangolin-CoVs. M, being evolutionarily conserved in COVID-19, is most ideal for COVID-19 phylogenetic study. Omicron may have been hiding among burrowing animals (e.g., pangolins) that provide optimal evolutionary environments for attenuation and increase shell hardness, which is essential for fecal–oral–respiratory transmission via buried feces. Incoming data support SDM e.g., the presence of fewer infectious particles in the lungs than in the bronchi upon infection.