- Browse by Author
Browsing by Author "Ford, James C."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Apathy Is Associated With Ventral Striatum Volume in Schizophrenia Spectrum Disorder(American Psychiatric Association, 2016) Roth, Robert M.; Garlinghouse, Matthew A.; Flashman, Laura A.; Koven, Nancy S.; Pendergrass, J. Cara; Ford, James C.; McAllister, Thomas W.; Saykin, Andrew J.; Psychiatry, School of MedicineApathy is prevalent in schizophrenia, but its etiology has received little investigation. The ventral striatum (VS), a key brain region involved in motivated behavior, has been implicated in studies of apathy. We therefore evaluated whether apathy is associated with volume of the VS on MRI in 23 patients with schizophrenia using voxel-based morphometry. Results indicated that greater self-reported apathy severity was associated with smaller volume of the right VS even when controlling for age, gender, depression, and total gray matter volume. The finding suggests that apathy is related to abnormality of brain circuitry subserving motivated behavior in patients with schizophrenia.Item Comparison of Season-Long Diffusivity Measures in a Cohort of Non-Concussed Contact and Non-Contact Athletes(Taylor & Francis, 2020-10) Merz, Zachary C.; Flashman, Laura A.; Ford, James C.; McDonald, Brenna C.; McAllister, Thomas W.; Radiology and Imaging Sciences, School of MedicineIntroduction: Concern surrounding short- and long-term consequences of participation in contact sports has become a significant public health topic. Previous literature utilizing diffusion tensor imaging in sports-related concussion has exhibited notable variety of analysis methods and analyzed regions of interest, and largely focuses on acute effects of concussion. The current study aimed to compare diffusivity metrics across a single season within athlete cohorts with no history of concussion. Methods: A prospective cohort of 75 contact and 79 non-contact division I athletes were compared across diffusion tensor imaging metrics (i.e. TRACULA); examinations were also performed assessing the relationship between neuroimaging metrics, head impact exposure metrics (in-helmet accelerometer), and neurocognitive variables. Assessment occurred at pre-and post-season time points. Results: Seasonal changes in fractional anisotropy and mean diffusivity values did not differ between athlete cohorts, nor did they differ within cohort groups, across pre- and post-season scans. Specific to contact athletes, positive associations were found between uncinate fasciculus mean diffusivity values and season linear acceleration (p =.018), season rotational acceleration (p =.017), and season hit severity (p =.021). Conclusions: Results suggest an influence of impact frequency, type, and severity on white matter integrity in select brain regions in contact athletes. Current findings expand our knowledge of anatomical changes over the course of a single season, and underscore the importance of considering methodology when interpreting findings in this population, as differing image analysis techniques may lead to different conclusions regarding significant effects.Item Defining the Role of Metastasis-Initiating Cells in Promoting Carcinogenesis in Ovarian Cancer(MDPI, 2023-12-05) Wang, Ji; Ford, James C.; Mitra, Anirban K.; Medical and Molecular Genetics, School of MedicineOvarian cancer is the deadliest gynecological malignancy with a high prevalence of transcoelomic metastasis. Metastasis is a multi-step process and only a small percentage of cancer cells, metastasis-initiating cells (MICs), have the capacity to finally establish metastatic lesions. These MICs maintain a certain level of stemness that allows them to differentiate into other cell types with distinct transcriptomic profiles and swiftly adapt to external stresses. Furthermore, they can coordinate with the microenvironment, through reciprocal interactions, to invade and establish metastases. Therefore, identifying, characterizing, and targeting MICs is a promising strategy to counter the spread of ovarian cancer. In this review, we provided an overview of OC MICs in the context of characterization, identification through cell surface markers, and their interactions with the metastatic niche to promote metastatic colonization.Item Detecting white matter alterations in multiple sclerosis using advanced diffusion magnetic resonance imaging(Wolters Kluwer, 2019-01) Mustafi, Sourajit M.; Harezlak, Jaroslaw; Kodiweera, Chandana; Randolph, Jennifer S.; Ford, James C.; Wishart, Heather A.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineMultiple sclerosis is a neurodegenerative and inflammatory disease, a hallmark of which is demyelinating lesions in the white matter. We hypothesized that alterations in white matter microstructures can be non-invasively characterized by advanced diffusion magnetic resonance imaging. Seven diffusion metrics were extracted from hybrid diffusion imaging acquisitions via classic diffusion tensor imaging, neurite orientation dispersion and density imaging, and q-space imaging. We investigated the sensitivity of the diffusion metrics in 36 sets of regions of interest in the brain white matter of six female patients (age 52.8 ± 4.3 years) with multiple sclerosis. Each region of interest set included a conventional T2-defined lesion, a matched perilesion area, and normal-appearing white matter. Six patients with multiple sclerosis (n = 5) or clinically isolated syndrome (n = 1) at a mild to moderate disability level were recruited. The patients exhibited microstructural alterations from normal-appearing white matter transitioning to perilesion areas and lesions, consistent with decreased tissue restriction, decreased axonal density, and increased classic diffusion tensor imaging diffusivity. The findings suggest that diffusion compartment modeling and q-space analysis appeared to be sensitive for detecting subtle microstructural alterations between perilesion areas and normal-appearing white matter.Item Differential Effects of Pergolide and Bromocriptine on Working Memory Performance and Brain Activation after Mild Traumatic Brain Injury(Liebert, 2020) Flashman, Laura A.; McDonald, Brenna C.; Ford, James C.; Kenny, Rachel M.; Andrews, Katharine D.; Saykin, Andrew J.; McAllister, Thomas W.; Radiology and Imaging Sciences, School of MedicineDopamine D1 and D2 receptors differ with respect to patterns of regional brain distribution and behavioral effects. Pre-clinical work suggests that D1 agonists enhance working memory, but the absence of selective D1 agonists has constrained using this approach in humans. This study examines working memory performance in mild traumatic brain injury (mTBI) patients when given pergolide, a mixed D1/D2 agonist, compared with bromocriptine, a selective D2 agonist. Fifteen individuals were studied 1 month after mTBI and compared with 17 healthy controls. At separate visits, participants were administered 1.25 mg bromocriptine or 0.05 mg pergolide prior to functional magnetic resonance imaging (MRI) using a working memory task (visual-verbal n-back). Results indicated a significant group-by-drug interaction for mean performance across n-back task conditions, where the mTBI group showed better performance on pergolide relative to bromocriptine, whereas controls showed the opposite pattern. There was also a significant effect of diagnosis, where mTBI patients performed worse than controls, particularly while on bromocriptine, as shown in our prior work. Functional MRI activation during the most challenging task condition (3-back > 0-back contrast) showed a significant group-by-drug interaction, with the mTBI group showing increased activation relative to controls in working memory circuitry while on pergolide, including in the left inferior frontal gyrus. Across participants there was a positive correlation between change in activation in this region and change in performance between drug conditions. Results suggest that activation of the D1 receptor may improve working memory performance after mTBI. This has implications for the development of pharmacological strategies to treat cognitive deficits after mTBI.Item Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes(American Academy of Neurology, 2014-01-07) McAllister, Thomas W.; Ford, James C.; Flashman, Laura A.; Maerlender, Arthur; Greenwald, Richard M.; Beckwith, Jonathan G.; Bolander, Richard P.; Tosteson, Tor D.; Turco, John H.; Raman, Rema; Jain, Sonia; Department of Psychiatry, IU School of MedicineOBJECTIVE: To determine whether exposure to repetitive head impacts over a single season affects white matter diffusion measures in collegiate contact sport athletes. METHODS: A prospective cohort study at a Division I NCAA athletic program of 80 nonconcussed varsity football and ice hockey players who wore instrumented helmets that recorded the acceleration-time history of the head following impact, and 79 non-contact sport athletes. Assessment occurred preseason and shortly after the season with diffusion tensor imaging and neurocognitive measures. RESULTS: There was a significant (p = 0.011) athlete-group difference for mean diffusivity (MD) in the corpus callosum. Postseason fractional anisotropy (FA) differed (p = 0.001) in the amygdala (0.238 vs 0.233). Measures of head impact exposure correlated with white matter diffusivity measures in several brain regions, including the corpus callosum, amygdala, cerebellar white matter, hippocampus, and thalamus. The magnitude of change in corpus callosum MD postseason was associated with poorer performance on a measure of verbal learning and memory. CONCLUSION: This study suggests a relationship between head impact exposure, white matter diffusion measures, and cognition over the course of a single season, even in the absence of diagnosed concussion, in a cohort of college athletes. Further work is needed to assess whether such effects are short term or persistent.Item Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion(Mary Ann Liebert, 2015-04-01) Ji, Songbai; Zhao, Wei; Ford, James C.; Beckwith, Jonathan G.; Bolander, Richard P.; Greenwald, Richard M.; Flashman, Laura A.; Paulsen, Keith D.; McAllister, Thomas W.; Department of Psychiatry, IU School of MedicineSports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.Item White Matter Injury Susceptibility via Fiber Strain Evaluation Using Whole-Brain Tractography(Mary Ann Leibert, 2016-10-15) Zhao, Wei; Ford, James C.; Flashman, Laura A.; McAllister, Thomas W.; Ji, Songbai; Psychiatry, School of MedicineMicroscale brain injury studies suggest axonal elongation as a potential mechanism for diffuse axonal injury (DAI). Recent studies have begun to incorporate white matter (WM) structural anisotropy in injury analysis, with initial evidence suggesting improved injury prediction performance. In this study, we further develop a tractography-based approach to analyze fiber strains along the entire lengths of fibers from voxel- or anatomically constrained whole-brain tractography. This technique potentially extends previous element- or voxel-based methods that instead utilize WM fiber orientations averaged from typically coarse elements or voxels. Perhaps more importantly, incorporating tractography-based axonal structural information enables assessment of the overall injury risks to functionally important neural pathways and the anatomical regions they connect, which is not possible with previous methods. A DAI susceptibility index was also established to quantify voxel-wise WM local structural integrity and tract-wise damage of individual neural pathways. This “graded” injury susceptibility potentially extends the commonly employed treatment of injury as a simple binary condition. As an illustration, we evaluate the DAI susceptibilities of WM voxels and transcallosal fiber tracts in three idealized head impacts. Findings suggest the potential importance of the tractography-based approach for injury prediction. These efforts may enable future studies to correlate WM mechanical responses with neuroimaging, cognitive alteration, and concussion, and to reveal the relative vulnerabilities of neural pathways and identify the most vulnerable ones in real-world head impacts.