- Browse by Author
Browsing by Author "Fitzpatrick, Anne M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma(National Academy of Sciences, 2020-01-28) Zein, Joe; Gaston, Benjamin; Bazeley, Peter; DeBoer, Mark D.; Igo, Robert P., Jr; Bleecker, Eugene R.; Meyers, Deborah; Comhair, Suzy; Marozkina, Nadzeya V.; Cotton, Calvin; Patel, Mona; Alyamani, Mohammad; Xu, Weiling; Busse, William W.; Calhoun, William J.; Ortega, Victor; Hawkins, Gregory A.; Castro, Mario; Chung, Kian Fan; Fahy, John V.; Fitzpatrick, Anne M.; Israel, Elliot; Jarjour, Nizar N.; Levy, Bruce; Mauger, David T.; Moore, Wendy C.; Noel, Patricia; Peters, Stephen P.; Teague, W. Gerald; Wenzel, Sally E.; Erzurum, Serpil C.; Sharifi, Nima; Medicine, School of MedicineAsthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention.Item Preventing asthma in high risk kids (PARK) with omalizumab: Design, rationale, methods, lessons learned and adaptation(Elsevier, 2021-01) Phipatanakul, Wanda; Mauger, David T.; Guilbert, Theresa W.; Bacharier, Leonard B.; Durrani, Sandy; Jackson, Daniel J.; Martinez, Fernando D.; Fitzpatrick, Anne M.; Cunningham, Amparito; Kunselman, Susan; Wheatley, Lisa M.; Bauer, Cindy; Davis, Carla M.; Geng, Bob; Kloepfer, Kirsten M.; Lapin, Craig; Liu, Andrew H.; Pongracic, Jacqueline A.; Teach, Stephen J.; Chmiel, James; Gaffin, Jonathan M.; Greenhawt, Matthew; Gupta, Meera R.; Lai, Peggy S.; Lemanske, Robert F.; Morgan, Wayne J.; Sheehan, William J.; Stokes, Jeffrey; Thorne, Peter S.; Oettgen, Hans C.; Israel, Elliot; Pediatrics, School of MedicineAsthma remains one of the most important challenges to pediatric public health in the US. A large majority of children with persistent and chronic asthma demonstrate aeroallergen sensitization, which remains a pivotal risk factor associated with the development of persistent, progressive asthma throughout life. In individuals with a tendency toward Type 2 inflammation, sensitization and exposure to high concentrations of offending allergens is associated with increased risk for development of, and impairment from, asthma. The cascade of biological responses to allergens is primarily mediated through IgE antibodies and their production is further stimulated by IgE responses to antigen exposure. In addition, circulating IgE impairs innate anti-viral immune responses. The latter effect could magnify the effects of another early life exposure associated with increased risk of the development of asthma – viral infections. Omalizumab binds to circulating IgE and thus ablates antigen signaling through IgE-related mechanisms. Further, it has been shown restore IFN-α response to rhinovirus and to reduce asthma exacerbations during the viral season. We therefore hypothesized that early blockade of IgE and IgE mediated responses with omalizumab would prevent the development and reduce the severity of asthma in those at high risk for developing asthma. Herein, we describe a double-blind, placebo-controlled trial of omalizumab in 2–3 year old children at high risk for development of asthma to prevent the development and reduce the severity of asthma. We describe the rationale, methods, and lessons learned in implementing this potentially transformative trial aimed at prevention of asthma.Item Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma(American Thoracic Society, 2021) Denlinger, Loren C.; Phillips, Brenda R.; Sorkness, Ronald L.; Bleecker, Eugene R.; Castro, Mario; DeBoer, Mark D.; Fitzpatrick, Anne M.; Hastie, Annette T.; Gaffin, Jonathan M.; Moore, Wendy C.; Peters, Michael C.; Peters, Stephen P.; Phipatanakul, Wanda; Cardet, Juan Carlos; Erzurum, Serpil C.; Fahy, John V.; Fajt, Merritt L.; Gaston, Benjamin; Levy, Bruce D.; Meyers, Deborah A.; Ross, Kristie; Teague, W. Gerald; Wenzel, Sally E.; Woodruff, Prescott G.; Zein, Joe; Jarjour, Nizar N.; Mauger, David T.; Israel, Elliot; Pediatrics, School of MedicineRationale: It is unclear why select patients with moderate-to-severe asthma continue to lose lung function despite therapy. We hypothesized that participants with the smallest responses to parenteral corticosteroids have the greatest risk of undergoing a severe decline in lung function. Objectives: To evaluate corticosteroid-response phenotypes as longitudinal predictors of lung decline. Methods: Adults within the NHLBI SARP III (Severe Asthma Research Program III) who had undergone a course of intramuscular triamcinolone at baseline and at ≥2 annual follow-up visits were evaluated. Longitudinal slopes were calculated for each participant’s post-bronchodilator FEV1% predicted. Categories of participant FEV1 slope were defined: severe decline, >2% loss/yr; mild decline, >0.5–2.0% loss/yr; no change, 0.5% loss/yr to <1% gain/yr; and improvement, ≥1% gain/yr. Regression models were used to develop predictors of severe decline. Measurements and Main Results: Of 396 participants, 78 had severe decline, 91 had mild decline, 114 had no change, and 113 showed improvement. The triamcinolone-induced difference in the post-bronchodilator FEV1% predicted (derived by baseline subtraction) was related to the 4-year change in lung function or slope category in univariable models (P < 0.001). For each 5% decrement in the triamcinolone-induced difference the FEV1% predicted, there was a 50% increase in the odds of being in the severe decline group (odds ratio, 1.5; 95% confidence interval, 1.3–1.8), when adjusted for baseline FEV1, exacerbation history, blood eosinophils and body mass index. Conclusions: Failure to improve the post-bronchodilator FEV1 after a challenge with parenteral corticosteroids is an evoked biomarker for patients at risk for a severe decline in lung function.