- Browse by Author
Browsing by Author "Fisher, John P."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation(Wiley, 2020-04-28) Wang, Hai; Agarwal, Pranay; Jiang, Bin; Stewart, Samantha; Liu, Xuanyou; Liang, Yutong; Hancioglu, Baris; Webb, Amy; Fisher, John P.; Liu, Zhenguo; Lu, Xiongbin; Tkaczuk, Katherine H. R.; He, Xiaoming; Medical and Molecular Genetics, School of MedicineItem Correction to Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial(American Chemical Society, 2021) Wang, Hai; Agarwal, Pranay; Zhao, Gang; Ji, Guang; Jewell, Christopher M.; Fisher, John P.; Lu, Xiongbin; He, Xiaoming; Medicine, School of Medicine[This corrects the article DOI: 10.1021/acscentsci.8b00050.].Item Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization(MDPI AG, 2015-09-18) Gandhi, Jarel K.; Zivkovic, Lada; Fisher, John P.; Yoder, Mervin C.; Brey, Eric M.; Department of Pediatrics, School of MedicineEnhanced vascularization at sensor interfaces can improve long-term function. Fibrin, a natural polymer, has shown promise as a biomaterial for sensor coating due to its ability to sustain endothelial cell growth and promote local vascularization. However, the culture of cells, particularly endothelial cells (EC), within 3D scaffolds for more than a few days is challenging due to rapid loss of EC viability. In this manuscript, a robust method for developing fibrin microbead scaffolds for long-term culture of encapsulated ECs is described. Fibrin microbeads are formed using sodium alginate as a structural template. The size, swelling and structural properties of the microbeads were varied with needle gauge and composition and concentration of the pre-gel solution. Endothelial colony-forming cells (ECFCs) were suspended in the fibrin beads and cultured within a perfusion bioreactor system. The perfusion bioreactor enhanced ECFCs viability and genome stability in fibrin beads relative to static culture. Perfusion bioreactors enable 3D culture of ECs within fibrin beads for potential application as a sensor coating.Item Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial(American Chemical Society, 2018-05-23) Wang, Hai; Agarwal, Pranay; Zhao, Gang; Ji, Guang; Jewell, Christopher M.; Fisher, John P.; Lu, Xiongbin; He, Xiaoming; Medical and Molecular Genetics, School of MedicineDrug resistance due to overexpression of membrane transporters in cancer cells and the existence of cancer stem cells (CSCs) is a major hurdle to effective and safe cancer chemotherapy. Nanoparticles have been explored to overcome cancer drug resistance. However, drug slowly released from nanoparticles can still be efficiently pumped out of drug-resistant cells. Here, a hybrid nanoparticle of phospholipid and polymers is developed to achieve cold-triggered burst release of encapsulated drug. With ice cooling to below ∼12 °C for both burst drug release and reduced membrane transporter activity, binding of the drug with its target in drug-resistant cells is evident, while it is minimal in the cells kept at 37 °C. Moreover, targeted drug delivery with the cold-responsive nanoparticles in combination with ice cooling not only can effectively kill drug-resistant ovarian cancer cells and their CSCs in vitro but also destroy both subcutaneous and orthotopic ovarian tumors in vivo with no evident systemic toxicity.