- Browse by Author
Browsing by Author "Filippi, Marie-Dominique"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation(SpringerNature, 2017-02-08) Hinge, Ashwini; Xu, Juying; Javier, Jose; Mose, Eucabeth; Kumar, Sachin; Kapur, Reuben; Srour, Edward F.; Malik, Punam; Aronow, Bruce J.; Filippi, Marie-Dominique; Department of Medicine, IU School of MedicineThe mechanisms regulating hematopoietic stem and progenitor cell (HSPC) fate choices remain ill-defined. Here, we show that a signalling network of p190-B RhoGAP-ROS-TGF-β-p38MAPK balances HSPC self-renewal and differentiation. Upon transplantation, HSPCs express high amounts of bioactive TGF-β1 protein, which is associated with high levels of p38MAPK activity and loss of HSC self-renewal in vivo. Elevated levels of bioactive TGF-β1 are associated with asymmetric fate choice in vitro in single HSPCs via p38MAPK activity and this is correlated with the asymmetric distribution of activated p38MAPK. In contrast, loss of p190-B, a RhoGTPase inhibitor, normalizes TGF-β levels and p38MAPK activity in HSPCs and is correlated with increased HSC self-renewal in vivo. Loss of p190-B also promotes symmetric retention of multi-lineage capacity in single HSPC myeloid cell cultures, further suggesting a link between p190-B-RhoGAP and non-canonical TGF-β signalling in HSPC differentiation. Thus, intracellular cytokine signalling may serve as 'fate determinants' used by HSPCs to modulate their activity.Item P38α/JNK signaling restrains erythropoiesis by suppressing Ezh2-mediated epigenetic silencing of Bim(Springer Nature, 2018-08-29) Hu, Ping; Nebreda, Angel R.; Hanenberg, Helmut; Kinnebrew, Garrett H.; Ivan, Mircea; Yoder, Mervin C.; Filippi, Marie-Dominique; Broxmeyer, Hal E.; Kapur, Reuben; Pediatrics, School of MedicineWhile erythropoietin (EPO) constitutes the major treatment for anemia, a range of anemic disorders remain resistant to EPO treatment. The need for alternative therapeutic strategies requires the identification of mechanisms that physiologically restrain erythropoiesis. Here we show that P38α restrains erythropoiesis in mouse and human erythroblasts independently of EPO by integrating apoptotic signals during recovery from anemia. P38α deficiency promotes JNK activation through increased expression of Map3k4 via a negative feedback mechanism. JNK prevents Cdk1-mediated phosphorylation and subsequent degradation by Smurf2 of the epigenetic silencer Ezh2. Stabilized Ezh2 silences Bim expression and protects erythroblasts from apoptosis. Thus, we identify P38α/JNK signaling as a molecular brake modulating erythropoiesis through epigenetic silencing of Bim. We propose that inhibition of P38α, by enhancing erythropoiesis in an EPO-independent fashion, may provide an alternative strategy for the treatment of anemia.Item Rho GTPase CDC42 regulates directionality and random movement via distinct MAPK pathways in neutrophils(2006-12) Szczur, Kathleen; Xu, Haiming; Atkinson, Simon J; Zheng, Yi; Filippi, Marie-DominiqueNeutrophil transmigration into tissue is a multiple-step process that results from a coordinated rearrangement of the cytoskeleton and adhesion complexes. Assembly and disassembly of actin and adhesion structures dictate motility behavior, while polarity and gradient sensing provide directionality to the cell movement. Here, using mice deficient in the CDC42 regulator CDC42 GTPase-activating protein (CDC42GAP), we demonstrate that CDC42 activity separately regulates neutrophil motility and directionality. CDC42GAP–/– neutrophils showed increased motility, while directed migration was defective. Podosome-like structures present at the leading edge in wild-type neutrophils were significantly reduced in CDC42GAP–/– cells. CDC42GAP–/– neutrophils also showed increased lateral and tail filopodia-like formation, and excess membrane protrusions. We further suggest that CDC42GAP-mediated extracellular signal–regulated kinase (ERK) activity regulates motility associated with podosome-like structures at the cell leading edge, while CDC42GAP-induced p38MAPK phosphorylation regulates directed migration by antagonizing filopodia assembly. Overall, this study reveals that CDC42 activity regulates both motility and directionality in neutrophils, but via distinct mitogen-activated protein kinase (MAPK) pathways.Item The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation(Rockefeller University Press, 2014-08-25) Kumar, Sachin; Xu, Juying; Kumar, Rupali Sani; Lakshmikanthan, Sribalaji; Kapur, Reuben; Kofron, Matthew; Chrzanowska-Wodnicka, Magdalena; Filippi, Marie-Dominique; Department of Pediatrics, IU School of MedicineNeutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation.