- Browse by Author
Browsing by Author "Ferreira, Jessica A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration(Wiley, 2021) Daghrery, Arwa; Ferreira, Jessica A.; de Souza Araújo, Isaac J.; Clarkson, Brian H.; Eckert, George J.; Bhaduri, Sarit B.; Malda, Jos; Bottino, Marco C.; Biostatistics, School of Public HealthPeriodontitis is a chronic inflammatory, bacteria-triggered disorder affecting nearly half of American adults. Although some level of tissue regeneration is realized, its low success in complex cases demands superior strategies to amplify regenerative capacity. Herein, highly ordered scaffolds are engineered via Melt ElectroWriting (MEW), and the effects of strand spacing, as well as the presence of a nanostructured fluorinated calcium phosphate (F/CaP) coating on the adhesion/proliferation, and osteogenic differentiation of human-derived periodontal ligament stem cells, are investigated. Upon initial cell-scaffold interaction screening aimed at defining the most suitable design, MEW poly(𝝐-caprolactone) scaffolds with 500 µm strand spacing are chosen. Following an alkali treatment, scaffolds are immersed in a pre-established solution to allow for coating formation. The presence of a nanostructured F/CaP coating leads to a marked upregulation of osteogenic genes and attenuated bacterial growth. In vivo findings confirm that the F/CaP-coated scaffolds are biocompatible and lead to periodontal regeneration when implanted in a rat mandibular periodontal fenestration defect model. In aggregate, it is considered that this work can contribute to the development of personalized scaffolds capable of enabling tissue-specific differentiation of progenitor cells, and thus guide simultaneous and coordinated regeneration of soft and hard periodontal tissues, while providing antimicrobial protection.Item Curcumin—A Natural Medicament for Root Canal Disinfection: Effects of Irrigation, Drug Release, and Photoactivation(Elsevier, 2019-11) Sotomil, Julian M.; Münchow, Eliseu A.; Pankajakshan, Divya; Spolnik, Kenneth J.; Ferreira, Jessica A.; Gregory, Richard L.; Bottino, Marco C.; Prosthodontics, School of DentistryIntroduction Curcumin incorporation into polymeric fibers was tested for its antimicrobial properties and potential use in root canal disinfection. Methods Curcumin-modified fibers were processed via electrospinning and tested against a 7-day old established Actinomyces naeslundii (An) biofilm. The medicaments tested were as follows: curcumin-modified fibers at 2.5 and 5.0 mg/mL, curcumin-based irrigant at 2.5 and 5.0 mg/mL, saline solution (negative control), and the following positive controls: 2% chlorhexidine, 1% NaOCl, and triple antibiotic paste (TAP, 1 mg/mL). All medicaments, except for the positive controls, were allocated according to the light exposure protocol: photoactivation with an LED every 30 s for 4 min or without photoactivation. After treatment, the medicaments were removed and 1 mL of saline solution was added; the biofilm was scraped from the well and used to prepare a 1:2000 dilution. Spiral plating was done using anaerobic blood agar plates. After 24 h, colony-forming units (CFU/mL, n=11/group) were counted to determine the antimicrobial effects. Results Data exhibited significant antimicrobial effects on positive control groups, followed by the curcumin irrigants, and lastly, the photoactivated curcumin-modified fibers. There was a significant reduction of viable bacteria in curcumin-based irrigants, which was greater than the TAP-treated group. Curcumin-free fibers, saline, and the non-photoactivated curcumin-modified fibers did not display antimicrobial activity. Conclusions Curcumin seems to be a potential alternative to TAP when controlling infection, but it requires a minimal concentration (2.5 mg/mL) to be effective. Photoactivation of curcumin-based medicaments seems to be essential to obtain greater antibiofilm activity.Item Innovations in Craniofacial Bone and Periodontal Tissue Engineering – From Electrospinning to Converged Biofabrication(Sage, 2022) Aytac, Zeynep; Dubey, Nileshkumar; Daghrery, Arwa; Ferreira, Jessica A.; de Souza Araújo, Isaac J.; Castilho, Miguel; Malda, Jos; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryFrom a materials perspective, the pillars for the development of clinically translatable scaffold-based strategies for craniomaxillofacial (CMF) bone and periodontal regeneration have included electrospinning and 3D printing (biofabrication) technologies. Here, we offer a detailed analysis of the latest innovations in 3D (bio)printing strategies for CMF bone and periodontal regeneration and provide future directions envisioning the development of advanced 3D architectures for successful clinical translation. First, the principles of electrospinning applied to the generation of biodegradable scaffolds are discussed. Next, we present on extrusion-based 3D printing technologies with a focus on creating scaffolds with improved regenerative capacity. In addition, we offer a critical appraisal on 3D (bio)printing and multitechnology convergence to enable the reconstruction of CMF bones and periodontal tissues. As a future outlook, we highlight future directions associated with the utilization of complementary biomaterials and (bio)fabrication technologies for effective translation of personalized and functional scaffolds into the clinics.Item Metformin-Loaded Nanospheres Laden Photocrosslinkable Gelatin Hydrogel for Bone Tissue Engineering(Elsevier, 2021) Qu, Liu; Dubey, Nileshkumar; Ribeiro, Juliana S.; Bordini, Ester A. F.; Ferreira, Jessica A.; Xu, Jinping; Castilho, Rogerio M.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryThe aim of this investigation was to engineer metformin (MF)-loaded mesoporous silica nanospheres (MSNs)-laden gelatin methacryloyl (GelMA) photocrosslinkable hydrogels and test their effects on the mechanical properties, swelling ratio, drug release, cytocompatibility, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). As-received and carboxylated MSNs (MSNs-COOH) were characterized by scanning and transmission electron microscopies (SEM and TEM), as well as Fourier-transform infrared spectroscopy (FTIR) prior to hydrogel modification. MF-MSNs-COOH were obtained by loading MF into MSNs at a 1:1 mass ratio. Upon MSNs-COOH laden-hydrogels fabrication, the mechanical properties, swelling ratio and MF release were evaluated. SHEDs were seeded on the hydrogels and cytocompatibility was examined. The effects of the MF-MSNs-COOH/GelMA on the osteogenic differentiation of SHEDs were measured by ALP activity, Alizarin Red assay, and Real-time PCR. Statistics were performed using one-way ANOVA (α = 0.05). Morphological (SEM and TEM) analyses of pristine and carboxylated MSNs revealed a mean particle size of 200 nm and 218 nm, respectively. Importantly, an intrinsic nanoporous structure was noticed. Incorporation of MSNs-COOH at 1.5 mg/mL in GelMA led to the highest compressive modulus and swelling ratio. The addition of MSNs-COOH (up to 3 mg/mL) in GelMA did not impact cell viability. The presence of MF in MSNs-COOH/GelMA significantly promoted cell proliferation. Significant upregulation of osteogenic-related genes (except OCN) were seen for modified (MSNs-COOH and MF-MSNs-COOH) hydrogels when compared to GelMA. Altogether, the engineered MF-MSNs-COOH/GelMA shows great promise in craniomaxillofacial applications as an injectable, cell-free and bioactive therapeutics for bone regeneration.Item Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration(Elsevier, 2022) de Souza Araújo, Isaac J.; Ferreira, Jessica A.; Daghrery, Arwa; Ribeiro, Juliana S.; Castilho, Miguel; Puppin-Rontani, Regina M.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryObjectives: Electrospun scaffolds are a versatile biomaterial platform to mimic fibrillar structure of native tissues extracellular matrix, and facilitate the incorporation of biomolecules for regenerative therapies. Self-assembling peptide P11-4 has emerged as a promising strategy to induce mineralization; however, P11-4 application has been mostly addressed for early caries lesions repair on dental enamel. Here, to investigate P11-4's efficacy on bone regeneration, polymeric electrospun scaffolds were developed, and then distinct concentrations of P11-4 were physically adsorbed on the scaffolds. Methods: P11-4-laden and pristine (P11-4-free) electrospun scaffolds were immersed in simulated body fluid and mineral precipitation identified by SEM. Functional groups and crystalline phases were analyzed by FTIR and XRD, respectively. Cytocompatibility, mineralization, and gene expression assays were conducted using stem cells from human exfoliated deciduous teeth. To investigate P11-4-laden scaffolds potential to induce in vivo mineralization, an established rat calvaria critical-size defect model was used. Results: We successfully synthesized nanofibrous (∼ 500 nm fiber diameter) scaffolds and observed that functionalization with P11-4 did not affect the fibers' diameter. SEM images indicated mineral precipitation, while FTIR and XRD confirmed apatite-like formation and crystallization for P11-4-laden scaffolds. In addition, P11-4-laden scaffolds were cytocompatible, highly stimulated cell-mediated mineral deposition, and upregulated the expression of mineralization-related genes compared to pristine scaffolds. P11-4-laden scaffolds led to enhanced in vivo bone regeneration after 8 weeks compared to pristine PCL. Significance: Electrospun scaffolds functionalized with P11-4 are a promising strategy for inducing mineralized tissues regeneration in the craniomaxillofacial complex.