- Browse by Author
Browsing by Author "Feingold, Brian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cardiac biomarkers in pediatric cardiomyopathy: Study design and recruitment results from the Pediatric Cardiomyopathy Registry(Elsevier, 2019-06-01) Everitt, Melanie D.; Wilkinson, James D.; Shi, Ling; Towbin, Jeffrey A.; Colan, Steven D.; Kantor, Paul F.; Canter, Charles E.; Webber, Steven A.; Hsu, Daphne T.; Pahl, Elfriede; Addonizio, Linda J.; Dodd, Debra A.; Jefferies, John L.; Rossano, Joseph W.; Feingold, Brian; Ware, Stephanie M.; Lee, Teresa M.; Godown, Justin; Simpson, Kathleen E.; Sleeper, Lynn A.; Czachor, Jason D.; Razoky, Hiedy; Hill, Ashley; Westphal, Joslyn; Molina, Kimberly M.; Lipshultz, Steven E.; Pediatrics, School of MedicineBackground: Cardiomyopathies are a rare cause of pediatric heart disease, but they are one of the leading causes of heart failure admissions, sudden death, and need for heart transplant in childhood. Reports from the Pediatric Cardiomyopathy Registry (PCMR) have shown that almost 40% of children presenting with symptomatic cardiomyopathy either die or undergo heart transplant within 2 years of presentation. Little is known regarding circulating biomarkers as predictors of outcome in pediatric cardiomyopathy. Study Design: The Cardiac Biomarkers in Pediatric Cardiomyopathy (PCM Biomarkers) study is a multi-center prospective study conducted by the PCMR investigators to identify serum biomarkers for predicting outcome in children with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Patients less than 21 years of age with either DCM or HCM were eligible. Those with DCM were enrolled into cohorts based on time from cardiomyopathy diagnosis: categorized as new onset or chronic. Clinical endpoints included sudden death and progressive heart failure. Results: There were 288 children diagnosed at a mean age of 7.2±6.3 years who enrolled in the PCM Biomarkers Study at a median time from diagnosis to enrollment of 1.9 years. There were 80 children enrolled in the new onset DCM cohort, defined as diagnosis at or 12 months prior to enrollment. The median age at diagnosis for the new onset DCM was 1.7 years and median time from diagnosis to enrollment was 0.1 years. There were 141 children enrolled with either chronic DCM or chronic HCM, defined as children ≥2 years from diagnosis to enrollment. Among children with chronic cardiomyopathy, median age at diagnosis was 3.4 years and median time from diagnosis to enrollment was 4.8 years. Conclusion: The PCM Biomarkers study is evaluating the predictive value of serum biomarkers to aid in the prognosis and management of children with DCM and HCM. The results will provide valuable information where data are lacking in children. Clinical Trial Registration: NCT01873976 https://clinicaltrials.gov/ct2/show/NCT01873976?term=PCM+Biomarker&rank=1Item Cardiac Imaging and Biomarkers for Assessing Myocardial Fibrosis in Children with Hypertrophic Cardiomyopathy(Elsevier, 2023) Kirmani, Sonya; Woodard, Pamela K.; Shi, Ling; Hamza, Taye H.; Canter, Charles E.; Colan, Steven D.; Pahl, Elfriede; Towbin, Jeffrey A.; Webber, Steven A.; Rossano, Joseph W.; Everitt, Melanie D.; Molina, Kimberly M.; Kantor, Paul F.; Jefferies, John L.; Feingold, Brian; Addonizio, Linda J.; Ware, Stephanie M.; Chung, Wendy K.; Ballweg, Jean A.; Lee, Teresa M.; Bansal, Neha; Razoky, Hiedy; Czachor, Jason; Lunze, Fatima I.; Marcus, Edward; Commean, Paul; Wilkinson, James D.; Lipshultz, Steven E.; Pediatrics, School of MedicineBackground: Myocardial fibrosis, as diagnosed on cardiac magnetic resonance imaging (cMRI) by late gadolinium enhancement (LGE), is associated with adverse outcomes in adults with hypertrophic cardiomyopathy (HCM), but its prevalence and magnitude in children with HCM have not been established. We investigated: (1) the prevalence and extent of myocardial fibrosis as detected by LGE cMRI; (2) the agreement between echocardiographic and cMRI measurements of cardiac structure; and (3) whether serum concentrations of N-terminal pro hormone B-type natriuretic peptide (NT-proBNP) and cardiac troponin-T are associated with cMRI measurements. Methods: A cross-section of children with HCM from 9 tertiary-care pediatric heart centers in the U.S. and Canada were enrolled in this prospective NHLBI study of cardiac biomarkers in pediatric cardiomyopathy (ClinicalTrials.gov Identifier: NCT01873976). The median age of the 67 participants was 13.8 years (range 1-18 years). Core laboratories analyzed echocardiographic and cMRI measurements, and serum biomarker concentrations. Results: In 52 children with non-obstructive HCM undergoing cMRI, overall low levels of myocardial fibrosis with LGE >2% of left ventricular (LV) mass were detected in 37 (71%) (median %LGE, 9.0%; IQR: 6.0%, 13.0%; range, 0% to 57%). Echocardiographic and cMRI measurements of LV dimensions, LV mass, and interventricular septal thickness showed good agreement using the Bland-Altman method. NT-proBNP concentrations were strongly and positively associated with LV mass and interventricular septal thickness (P < .001), but not LGE. Conclusions: Low levels of myocardial fibrosis are common in pediatric patients with HCM seen at referral centers. Longitudinal studies of myocardial fibrosis and serum biomarkers are warranted to determine their predictive value for adverse outcomes in pediatric patients with HCM.Item Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability(Elsevier, 2022-02-15) Teekakirikul, Polakit; Zhu, Wenjuan; Xu, Xinxiu; Young, Cullen B.; Tan, Tuantuan; Smith, Amanda M.; Wang, Chengdong; Peterson, Kevin A.; Gabriel, George C.; Ho, Sebastian; Sheng, Yi; de Bellaing, Anne Moreau; Sonnenberg, Daniel A.; Lin, Jiuann-huey; Fotiou, Elisavet; Tenin, Gennadiy; Wang, Michael X.; Wu, Yijen L.; Feinstein, Timothy; Devine, William; Gou, Honglan; Bais, Abha S.; Glennon, Benjamin J.; Zahid, Maliha; Wong, Timothy C.; Ahmad, Ferhaan; Rynkiewicz, Michael J.; Lehman, William J.; Keavney, Bernard; Alastalo, Tero-Pekka; Freckmann, Mary-Louise; Orwig, Kyle; Murray, Steve; Ware, Stephanie M.; Zhao, Hui; Feingold, Brian; Lo, Cecilia W.; Pediatrics, School of MedicineAnalysis of large-scale human genomic data has yielded unexplained mutations known to cause severe disease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril assembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation.