- Browse by Author
Browsing by Author "Feinberg, Konstantin"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item 07. The Mechanism of NGF Signaling In Innervation-dependent Corneal Epithelial Renewal: New Topical Treatment For Neurotrophic Keratopathy(Wolters Kluwer, 2024-04-19) Hussain, Arif; Mirmoeini, Kaveh; Mulenga, Chilando; Crabtree, Jordan; Tajdaran, Kiana; Henrique, Mario; Blum, Noam; Shalom-Feuerstein, Ruby; Borschel, Gregory; Feinberg, Konstantin; Surgery, School of MedicineBackground: Corneal clarity is essential for vision. Limbal stem cells (LSCs), the source of transparent corneal epithelial cells, are located in the basal epithelium of the limbus at the corneal-conjunctival interface, where they interact with corneal sensory nerves. Besides protection, corneal nerves may stimulate LSC activity. Pathological corneal denervation can lead to ulcers, scarring, and opacification due to impaired healing from repetitive wounds. This condition, termed Neurotrophic Keratopathy (NK), a major cause of corneal blindness, and lacks a definitive cure. Corneal nerves release various trophic factors that regulate epithelial renewal. Nerve growth factor (NGF) has shown positive effects on corneal healing and maintenance in vivo. Topical recombinant human NGF is the only FDA-approved treatment for NK. However, NGF is not efficacious in 30% of cases, requires very frequent dosing, and costs $100k per course. Moreover, NGF’s ability to heal corneal ulcers is limited. Prior studies showed NGF stimulates proliferation and maintenance of cultured human LSCs, which express TrkA and p75NTR receptors, but didn’t establish a link between NGF signaling and corneal sensory innervation-mediated trophic regulation of epithelial renewal. Furthermore, the role and molecular mechanism of NGF signaling in LSC activity remains unidentified. We hypothesize that NGF, locally expressed in its mature and premature (proNGF) forms, regulates LSC activity-dependent homeostatic and wound-induced corneal epithelial renewal via differential activation of its receptors TrkA and p75NTR, a process dependent on corneal sensory innervation. Methods: A) We conducted in vivo experiments in wild-type and mutant mice and rats to elucidate the NGF signaling mechanism in corneal innervation-dependent epithelial renewal. We examined the effect of combinations of TrkA and p75NTR agonists and antagonists on the healing of experimentally wounded corneas, both intact and surgically denervated. B) To understand the role and mechanism of NGF signaling in LSC activity and its relevance to humans, we assessed the clonogenicity of cultured human LSCs (hLSCs) by pharmacologically modulating NGF receptors, as described in (A). Results: A) While inactivation of TrkA completely prevents healing of normally innervated cornea, inactivation of p75NTR combined with a single daily dose of NGF induces complete and rapid healing of denervated de-epithelialized corneas. B) NGF or specific p75NTR inhibitor THX-B supported colonies’ formation by hLSCs that were further augmented by combination of the two compounds. Conclusions: Corneal sensory nerve-associated expression of NGF in its both forms (NGF and proNGF) regulates the proliferation and differentiation of LSCs by differentially stimulating the activity of the NGF receptors. Combined pharmacological activation and inhibition of TrkA and p75NTR, respectively, will be applied in the development of a superior NGF-based treatment of NK.Item A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair(Wolters Kluwer, 2024) Daeschler, Simeon C.; So, Katelyn J. W.; Feinberg, Konstantin; Manoraj, Marina; Cheung, Jenny; Zhang, Jennifer; Mirmoeini, Kaveh; Santerre, J. Paul; Gordon, Tessa; Borschel, Gregory H.; Surgery, School of MedicineAxonal regeneration following surgical nerve repair is slow and often incomplete, resulting in poor functional recovery which sometimes contributes to lifelong disability. Currently, there are no FDA-approved therapies available to promote nerve regeneration. Tacrolimus accelerates axonal regeneration, but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery. The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site, with suitable properties for scalable production and clinical application, aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure. Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days. Size and drug loading are adjustable for applications in small and large caliber nerves, and the wrap degrades within 120 days into biocompatible byproducts. Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80% compared with systemic delivery. Given its surgical suitability and preclinical efficacy and safety, this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.Item Advancing Nerve Regeneration: Translational Perspectives of Tacrolimus (FK506)(MDPI, 2023-08-14) Daeschler, Simeon C.; Feinberg, Konstantin; Harhaus, Leila; Kneser, Ulrich; Gordon, Tessa; Borschel, Gregory H.; Ophthalmology, School of MedicinePeripheral nerve injuries have far-reaching implications for individuals and society, leading to functional impairments, prolonged rehabilitation, and substantial socioeconomic burdens. Tacrolimus, a potent immunosuppressive drug known for its neuroregenerative properties, has emerged in experimental studies as a promising candidate to accelerate nerve fiber regeneration. This review investigates the therapeutic potential of tacrolimus by exploring the postulated mechanisms of action in relation to biological barriers to nerve injury recovery. By mapping both the preclinical and clinical evidence, the benefits and drawbacks of systemic tacrolimus administration and novel delivery systems for localized tacrolimus delivery after nerve injury are elucidated. Through synthesizing the current evidence, identifying practical barriers for clinical translation, and discussing potential strategies to overcome the translational gap, this review provides insights into the translational perspectives of tacrolimus as an adjunct therapy for nerve regeneration.Item Biohacking Nerve Repair: Novel Biomaterials, Local Drug Delivery, Electrical Stimulation, and Allografts to Aid Surgical Repair(MDPI, 2024-07-31) Crabtree, Jordan R.; Mulenga, Chilando M.; Tran, Khoa; Feinberg, Konstantin; Santerre, J. Paul; Borschel, Gregory H.; Surgery, School of MedicineThe regenerative capacity of the peripheral nervous system is limited, and peripheral nerve injuries often result in incomplete healing and poor outcomes even after repair. Transection injuries that induce a nerve gap necessitate microsurgical intervention; however, even the current gold standard of repair, autologous nerve graft, frequently results in poor functional recovery. Several interventions have been developed to augment the surgical repair of peripheral nerves, and the application of functional biomaterials, local delivery of bioactive substances, electrical stimulation, and allografts are among the most promising approaches to enhance innate healing across a nerve gap. Biocompatible polymers with optimized degradation rates, topographic features, and other functions provided by their composition have been incorporated into novel nerve conduits (NCs). Many of these allow for the delivery of drugs, neurotrophic factors, and whole cells locally to nerve repair sites, mitigating adverse effects that limit their systemic use. The electrical stimulation of repaired nerves in the perioperative period has shown benefits to healing and recovery in human trials, and novel biomaterials to enhance these effects show promise in preclinical models. The use of acellular nerve allografts (ANAs) circumvents the morbidity of donor nerve harvest necessitated by the use of autografts, and improvements in tissue-processing techniques may allow for more readily available and cost-effective options. Each of these interventions aid in neural regeneration after repair when applied independently, and their differing forms, benefits, and methods of application present ample opportunity for synergistic effects when applied in combination.Item Congenital disorder of glycosylation – one size does not fit all: a parent’s perspective(Sage, 2022-08-22) Feinberg, Konstantin; Surgery, School of MedicineThis article is written by the parent of a child living with PMM2-congenital disorder of glycosylation (abbreviated to PMM2-CDG). It provides a parental perspective of the journey taken from diagnosis to present day and details the effect of off-label treatment with epalrestat.Item Foretinib mitigates cutaneous nerve fiber loss in experimental diabetic neuropathy(Springer Nature, 2022-05-19) Daeschler, Simeon C.; Zhang, Jennifer; Gordon, Tessa; Borschel, Gregory H.; Feinberg, Konstantin; Surgery, School of MedicineDiabetes is by far, the most common cause of neuropathy, inducing neurodegeneration of terminal sensory nerve fibers associated with loss of sensation, paresthesia, and persistent pain. Foretinib prevents die-back degeneration in cultured sensory and sympathetic neurons by rescuing mitochondrial activity and has been proven safe in prospective clinical trials. Here we aimed at investigating a potential neuroprotective effect of Foretinib in experimental diabetic neuropathy. A mouse model of streptozotocin induced diabetes was used that expresses yellow fluorescent protein (YFP) in peripheral nerve fibers under the thy-1 promoter. Streptozotocin-injected mice developed a stable diabetic state (blood glucose > 270 mg/dl), with a significant reduction of intraepidermal nerve fiber density by 25% at 5 weeks compared to the non-diabetic controls. When diabetic mice were treated with Foretinib, a significantly greater volume of the cutaneous nerve fibers (67.3%) in the plantar skin was preserved compared to vehicle treated (37.8%) and non-treated (44.9%) diabetic mice while proximal nerve fiber morphology was not affected. Our results indicate a neuroprotective effect of Foretinib on cutaneous nerve fibers in experimental diabetic neuropathy. As Foretinib treated mice showed greater weight loss compared to vehicle treated controls, future studies may define more sustainable treatment regimen and thereby may allow patients to take advantage of this neuroprotective drug in chronic neurodegenerative diseases like diabetic neuropathy.Item Schwann Cells Are Key Regulators of Corneal Epithelial Renewal(Association for Research in Vision and Ophthalmology (ARVO), 2023) Mirmoeini, Kaveh; Tajdaran, Kiana; Zhang, Jennifer; Gordon, Tessa; Ali, Asim; Kaplan, David R.; Feinberg, Konstantin; Borschel, Gregory H.; Surgery, School of MedicinePurpose: Corneal sensory nerves protect the cornea from injury. They are also thought to stimulate limbal stem cells (LSCs) to produce transparent epithelial cells constantly, enabling vision. In other organs, Schwann cells (SCs) associated with tissue-innervating axon terminals mediate tissue regeneration. This study defines the critical role of the corneal axon-ensheathing SCs in homeostatic and regenerative corneal epithelial cell renewal. Methods: SC localization in the cornea was determined by in situ hybridization and immunohistochemistry with SC markers. In vivo SC visualization and/or ablation were performed in mice with inducible corneal SC-specific expression of tdTomato and/or Diphtheria toxin, respectively. The relative locations of SCs and LSCs were observed with immunohistochemical analysis of harvested genetically SC-prelabeled mouse corneas with LSC-specific antibodies. The correlation between cornea-innervating axons and the appearance of SCs was ascertained using corneal denervation in rats. To determine the limbal niche cellular composition and gene expression changes associated with innervation-dependent epithelial renewal, single-cell RNA sequencing (scRNA-seq) of dissociated healthy, de-epithelized, and denervated cornea limbi was performed. Results: We observed limbal enrichment of corneal axon-associated myelinating and non-myelinating SCs. Induced local genetic ablation of SCs, although leaving corneal sensory innervation intact, markedly inhibited corneal epithelial renewal. scRNA-seq analysis (1) highlighted the transcriptional heterogenicity of cells populating the limbal niche, and (2) identified transcriptional changes associated with corneal innervation and during wound healing that model potential regulatory paracrine interactions between SCs and LSCs. Conclusions: Limbal SCs are required for innervation-dependent corneal epithelial renewal.Item Sustained Release of Tacrolimus From a Topical Drug Delivery System Promotes Corneal Reinnervation(Association for Research in Vision and Ophthalmology (ARVO), 2022) Daeschler, Simeon C.; Mirmoeini, Kaveh; Gordon, Tessa; Chan, Katelyn; Zhang, Jennifer; Ali, Asim; Feinberg, Konstantin; Borschel, Gregory H.; Surgery, School of MedicinePurpose: Corneal nerve fibers provide sensation and maintain the epithelial renewal process. Insufficient corneal innervation can cause neurotrophic keratopathy. Here, topically delivered tacrolimus is evaluated for its therapeutic potential to promote corneal reinnervation in rats. Methods: A compartmentalized neuronal cell culture was used to determine the effect of locally delivered tacrolimus on sensory axon regeneration in vitro. The regenerating axons but not the cell bodies were exposed to tacrolimus (50 ng/mL), nerve growth factor (50 ng/mL), or a vehicle control. Axon area and length were measured after 48 hours. Then, a biodegradable nanofiber drug delivery system was fabricated via electrospinning of a tacrolimus-loaded polycarbonate-urethane polymer. Biocompatibility, degradation, drug biodistribution, and therapeutic effectiveness were tested in a rat model of neurotrophic keratopathy induced by stereotactic trigeminal nerve ablation. Results: Sensory neurons whose axons were exposed to tacrolimus regenerated significantly more and longer axons compared to vehicle-treated cultures. Trigeminal nerve ablation in rats reliably induced corneal denervation. Four weeks after denervation, rats that had received tacrolimus topically showed similar limbal innervation but a significantly higher nerve fiber density in the center of the cornea compared to the non-treated control. Topically applied tacrolimus was detectable in the ipsilateral vitreal body, the plasma, and the ipsilateral trigeminal ganglion but not in their contralateral counterparts and vital organs after 4 weeks of topical release. Conclusions: Locally delivered tacrolimus promotes axonal regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Translational relevance: Topically applied tacrolimus may provide a readily translatable approach to promote corneal reinnervation.Item The Role of Sensory Innervation in Homeostatic and Injury-Induced Corneal Epithelial Renewal(MDPI, 2023-08-09) Feinberg, Konstantin; Tajdaran, Kiana; Mirmoeini, Kaveh; Daeschler, Simeon C.; Henriquez, Mario A.; Stevens, Katelyn E.; Mulenga, Chilando M.; Hussain, Arif; Hamrah, Pedram; Ali, Asim; Gordon, Tessa; Borschel, Gregory H.; Surgery, School of MedicineThe cornea is the window through which we see the world. Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide. In this report, we review the currently available therapeutic solutions for NK and discuss the progress in our understanding of how the sensory nerves induce corneal epithelial renewal.