ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Farmer, Ben"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Hepatic glucose metabolism in late pregnancy: normal versus high-fat and -fructose diet
    (American Diabetes Association, 2013) Coate, Katie C.; Smith, Marta S.; Shiota, Masakazu; Irimia, Jose M.; Roach, Peter J.; Farmer, Ben; Williams, Phillip E.; Moore, Mary Courtney; Biochemistry and Molecular Biology, School of Medicine
    Net hepatic glucose uptake (NHGU) is an important contributor to postprandial glycemic control. We hypothesized that NHGU is reduced during normal pregnancy and in a pregnant diet-induced model of impaired glucose intolerance/gestational diabetes mellitus (IGT/GDM). Dogs (n = 7 per group) that were nonpregnant (N), normal pregnant (P), or pregnant with IGT/GDM (pregnant dogs fed a high-fat and -fructose diet [P-HFF]) underwent a hyperinsulinemic-hyperglycemic clamp with intraportal glucose infusion. Clamp period insulin, glucagon, and glucose concentrations and hepatic glucose loads did not differ among groups. The N dogs reached near-maximal NHGU rates within 30 min; mean ± SEM NHGU was 105 ± 9 µmol·100 g liver⁻¹·min⁻¹. The P and P-HFF dogs reached maximal NHGU in 90-120 min; their NHGU was blunted (68 ± 9 and 16 ± 17 µmol·100 g liver⁻¹·min⁻¹, respectively). Hepatic glycogen synthesis was reduced 20% in P versus N and 40% in P-HFF versus P dogs. This was associated with a reduction (>70%) in glycogen synthase activity in P-HFF versus P and increased glycogen phosphorylase (GP) activity in both P (1.7-fold greater than N) and P-HFF (1.8-fold greater than P) dogs. Thus, NHGU under conditions mimicking the postprandial state is delayed and suppressed in normal pregnancy, with concomitant reduction in glycogen storage. NHGU is further blunted in IGT/GDM. This likely contributes to postprandial hyperglycemia during pregnancy, with potential adverse outcomes for the fetus and mother.
  • Loading...
    Thumbnail Image
    Item
    Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding
    (American Physiological Society (APS), 2014-07-15) Coate, Katie C.; Kraft, Guillaume; Moore, Mary Courtney; Smith, Marta S.; Ramnanan, Christopher; Irimia, Jose M.; Roach, Peter J.; Farmer, Ben; Neal, Doss W.; Williams, Phil; Cherrington, Alan D.; Department of Biochemistry & Molecular Biology, IU School of Medicine
    In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3–4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg−1·min−1) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg−1·min−1 in CTR, HFA, and HFR, respectively (P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step.
  • Loading...
    Thumbnail Image
    Item
    Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog
    (American Physiological Society, 2024) Coate, Katie C.; Ramnanan, Christopher J.; Smith, Marta; Winnick, Jason J.; Kraft, Guillaume; Irimia-Dominguez, Jose; Farmer, Ben; Donahue, E. Patrick; Roach, Peter J.; Cherrington, Alan D.; Edgerton, Dale S.; Biochemistry and Molecular Biology, School of Medicine
    Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development. NEW & NOTEWORTHY: Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.
  • Loading...
    Thumbnail Image
    Item
    Portal Vein Glucose Entry Triggers a Coordinated Cellular Response That Potentiates Hepatic Glucose Uptake and Storage in Normal but Not High-Fat/High-Fructose–Fed Dogs
    (American Diabetes Association, 2013) Coate, Katie C.; Kraft, Guillaume; Irimia, Jose M.; Smith, Marta S.; Farmer, Ben; Neal, Doss W.; Roach, Peter J.; Shiota, Masakazu; Cherrington, Alan D.; Biochemistry and Molecular Biology, School of Medicine
    The cellular events mediating the pleiotropic actions of portal vein glucose (PoG) delivery on hepatic glucose disposition have not been clearly defined. Likewise, the molecular defects associated with postprandial hyperglycemia and impaired hepatic glucose uptake (HGU) following consumption of a high-fat, high-fructose diet (HFFD) are unknown. Our goal was to identify hepatocellular changes elicited by hyperinsulinemia, hyperglycemia, and PoG signaling in normal chow-fed (CTR) and HFFD-fed dogs. In CTR dogs, we demonstrated that PoG infusion in the presence of hyperinsulinemia and hyperglycemia triggered an increase in the activity of hepatic glucokinase (GK) and glycogen synthase (GS), which occurred in association with further augmentation in HGU and glycogen synthesis (GSYN) in vivo. In contrast, 4 weeks of HFFD feeding markedly reduced GK protein content and impaired the activation of GS in association with diminished HGU and GSYN in vivo. Furthermore, the enzymatic changes associated with PoG sensing in chow-fed animals were abolished in HFFD-fed animals, consistent with loss of the stimulatory effects of PoG delivery. These data reveal new insight into the molecular physiology of the portal glucose signaling mechanism under normal conditions and to the pathophysiology of aberrant postprandial hepatic glucose disposition evident under a diet-induced glucose-intolerant condition.
  • Loading...
    Thumbnail Image
    Item
    A Soluble Guanylate Cyclase–Dependent Mechanism Is Involved in the Regulation of Net Hepatic Glucose Uptake by Nitric Oxide in Vivo
    (American Diabetes Association, 2010-09-07) An, Zhibo; Winnick, Jason J.; Farmer, Ben; Neal, Doss; Lautz, Margaret; Irimia, Jose M.; Roach, Peter J.; Cherrington, Alan D.; Biochemistry and Molecular Biology, School of Medicine
    OBJECTIVE We previously showed that elevating hepatic nitric oxide (NO) levels reduced net hepatic glucose uptake (NHGU) in the presence of portal glucose delivery, hyperglycemia, and hyperinsulinemia. The aim of the present study was to determine the role of a downstream signal, soluble guanylate cyclase (sGC), in the regulation of NHGU by NO. RESEARCH DESIGN AND METHODS Studies were performed on 42-h–fasted conscious dogs fitted with vascular catheters. At 0 min, somatostatin was given peripherally along with 4× basal insulin and basal glucagon intraportally. Glucose was delivered at a variable rate via a leg vein to double the blood glucose level and hepatic glucose load throughout the study. From 90 to 270 min, an intraportal infusion of the sGC inhibitor 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) was given in −sGC (n = 10) and −sGC/+NO (n = 6), whereas saline was given in saline infusion (SAL) (n = 10). The −sGC/+NO group also received intraportal SIN-1 (NO donor) to elevate hepatic NO from 180 to 270 min. RESULTS In the presence of 4× basal insulin, basal glucagon, and hyperglycemia (2× basal ), inhibition of sGC in the liver enhanced NHGU (mg/kg/min; 210–270 min) by ∼55% (2.9 ± 0.2 in SAL vs. 4.6 ± 0.5 in −sGC). Further elevating hepatic NO failed to reduce NHGU (4.5 ± 0.7 in −sGC/+NO). Net hepatic carbon retention (i.e., glycogen synthesis; mg glucose equivalents/kg/min) increased to 3.8 ± 0.2 in −sGC and 3.8 ± 0.4 in −sGC/+NO vs. 2.4 ± 0.2 in SAL (P < 0.05). CONCLUSIONS NO regulates liver glucose uptake through a sGC-dependent pathway. The latter could be a target for pharmacologic intervention to increase meal-associated hepatic glucose uptake in individuals with type 2 diabetes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University