- Browse by Author
Browsing by Author "Farlow, M. R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Identification of functional variants from whole-exome sequencing, combined with neuroimaging genetics(Springer Nature, 2013) Nho, K.; Corneveaux, J. J.; Kim, S.; Lin, H.; Risacher, S. L.; Shen, L.; Swaminathan, S.; Ramanan, V. K.; Liu, Y.; Foroud, T.; Inlow, M. H.; Siniard, A. L.; Reiman, R. A.; Aisen, P. S.; Petersen, R. C.; Green, R. C.; Jack, C. R.; Weiner, M. W.; Baldwin, C. T.; Lunetta, K.; Farrer, L. A.; Multi-Institutional Research on Alzheimer Genetic Epidemiology (MIRAGE) Study; Furney, S. J.; Lovestone, S.; Simmons, A.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kloszewska, I.; Soininen, H.; AddNeuroMed Consortium; McDonald, B. C.; Farlow, M. R.; Ghetti, B.; Indiana Memory and Aging Study; Huentelman, M. J.; Saykin, A. J.; Alzheimer's Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineItem Phenotypic variability in three families with valosin-containing protein mutation(Wiley, 2013) Spina, S.; Van Laar, A. D.; Murrell, J. R.; Hamilton, R. L.; Kofler, J. K.; Epperson, F.; Farlow, M. R.; Lopez, O. L.; Quinlan, J.; DeKosky, S. T.; Ghetti, B.; Pathology and Laboratory Medicine, School of MedicineBackground and purpose: The phenotype of IBMPFD [inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (FTD)] associated with valosin-containing protein (VCP) mutation is described in three families. Methods: Probands were identified based on a pathological diagnosis of frontotemporal lobar degeneration with TDP-43-positive inclusions type IV. VCP sequencing was carried out. Clinical data on affected family members were reviewed. Results: Ohio family: four subjects presented muscle weakness and wasting. (One subject had both neuropathic and myopathic findings and another subject showed only evidence of myopathy. The etiology of weakness could not be ascertained in the remaining two subjects.) Two individuals also showed Parkinsonism (with associated FTD in one of the two). The proband's brain displayed FTLD-TDP type IV and Braak stage five Parkinson's disease (PD). A VCP R191Q mutation was found. Pennsylvania family: 11 subjects developed IBMPFD. Parkinsonism was noted in two mutation carriers, whilst another subject presented with primary progressive aphasia (PPA). A novel VCP T262A mutation was found. Indiana family: three subjects developed IBMPFD. FTD was diagnosed in two individuals and suspected in the third one who also displayed muscle weakness. A VCP R159C mutation was found. Conclusions: We identified three families with IBMPFD associated with VCP mutations. Clinical and pathological PD was documented for the first time in members of two families. A novel T262A mutation was found. One individual had PPA: an uncommon presentation of IBMPFD.Item Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment(Springer Nature, 2013) Nho, K.; Corneveaux, J. J.; Kim, S.; Lin, H.; Risacher, S. L.; Shen, L.; Swaminathan, S.; Ramanan, V. K.; Liu, Y.; Foroud, T.; Inlow, M. H.; Siniard, A. L.; Reiman, R. A.; Aisen, P. S.; Petersen, R. C.; Green, R. C.; Jack, C. R.; Weiner, M. W.; Baldwin, C. T.; Lunetta, K.; Farrer, L. A.; Multi-Institutional Research on Alzheimer Genetic Epidemiology (MIRAGE) Study; Furney, S. J.; Lovestone, S.; Simmons, A.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kloszewska, I.; Soininen, H.; AddNeuroMed Consortium; McDonald, B. C.; Farlow, M. R.; Ghetti, B.; Indiana Memory and Aging Study; Huentelman, M. J.; Saykin, A. J.; Alzheimer's Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineWhole-exome sequencing of individuals with mild cognitive impairment, combined with genotype imputation, was used to identify coding variants other than the apolipoprotein E (APOE) ε4 allele associated with rate of hippocampal volume loss using an extreme trait design. Matched unrelated APOE ε3 homozygous male Caucasian participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were selected at the extremes of the 2-year longitudinal change distribution of hippocampal volume (eight subjects with rapid rates of atrophy and eight with slow/stable rates of atrophy). We identified 57 non-synonymous single nucleotide variants (SNVs) which were found exclusively in at least 4 of 8 subjects in the rapid atrophy group, but not in any of the 8 subjects in the slow atrophy group. Among these SNVs, the variants that accounted for the greatest group difference and were predicted in silico as 'probably damaging' missense variants were rs9610775 (CARD10) and rs1136410 (PARP1). To further investigate and extend the exome findings in a larger sample, we conducted quantitative trait analysis including whole-brain search in the remaining ADNI APOE ε3/ε3 group (N=315). Genetic variation within PARP1 and CARD10 was associated with rate of hippocampal neurodegeneration in APOE ε3/ε3. Meta-analysis across five independent cross sectional cohorts indicated that rs1136410 is also significantly associated with hippocampal volume in APOE ε3/ε3 individuals (N=923). Larger sequencing studies and longitudinal follow-up are needed for confirmation. The combination of next-generation sequencing and quantitative imaging phenotypes holds significant promise for discovery of variants involved in neurodegeneration.