- Browse by Author
Browsing by Author "Fan, Yao"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item The baroreflex afferent pathway plays a critical role in H2S-mediated autonomic control of blood pressure regulation under physiological and hypertensive conditions(Springer Nature, 2021) Li, Ying; Feng, Yan; Liu, Li; Li, Xue; Li, Xin-yu; Sun, Xun; Li, Ke-xin; Zha, Rong-rong; Wang, Hong-dan; Zhang, Meng-di; Fan, Xiong-xiong; Wu, Di; Fan, Yao; Zhang, Hao-cheng; Qiao, Guo-fen; Li, Bai-yan; Biomedical Engineering, School of Engineering and TechnologyHydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.Item Inhibition of the Growth of Breast Cancer-Associated Brain Tumors by the Osteocyte-Derived Conditioned Medium(MDPI, 2021-03-03) Sano, Tomohiko; Sun, Xun; Feng, Yan; Liu, Shengzhi; Hase, Misato; Fan, Yao; Zha, Rongrong; Wu, Di; Aryal, Uma K.; Li, Bai-Yan; Sudo, Akihiro; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyThe brain is a common site of metastasis from advanced breast cancer but few effective treatments are available. We examined a therapeutic option with a conditioned medium (CM), focusing on the role of Lrp5 and β-catenin in Wnt signaling, and IL1ra in osteocytes. Osteocytes presented the innate anti-tumor effect and the overexpression of the above genes strengthened their action. In a mouse model, the injection of their CM inhibited mammary tumors and tumor-driven osteolysis. Importantly, Lrp5- and/or IL1ra-overexpressing osteocytes or the local administration of β-catenin-overexpressing CM markedly inhibited brain tumors. In the transport analysis, tumor-suppressing factors in CM were shown to diffuse through the skull. Mechanistically, the CM with overexpression of the above genes downregulated oncogenic genes such as MMP9, Runx2, TGFβ, and Snail in breast cancer cells. Also, the CM with β-catenin overexpression downregulated CXCL1 and CXCL5 and upregulated tumor suppressors such as LIMA1, DSP, p53, and TRAIL in breast cancer cells. Notably, whole-genome proteomics revealed that histone H4 was enriched in CM and acted as an atypical tumor suppressor. Lrp5-overexpressing MSCs were also shown to act as anti-tumor agents. Collectively, this study demonstrated the therapeutic role of engineered CM in brain tumors and the tumor-suppressing action of extracellular histone H4. The result sheds light on the potential CM-based therapy for breast cancer-associated brain metastases in a minimally invasive manner.Item Loading-induced antitumor capability of murine and human urine(Wiley, 2020-06) Wu, Di; Fan, Yao; Liu, Shengzhi; Woollam, Mark D.; Sun, Xun; Murao, Eiji; Zha, Rongrong; Prakash, Rahul; Park, Charles; Siegel, Amanda P.; Liu, Jing; Agarwal, Mangilal; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyWhile urine has been considered as a useful bio-fluid for health monitoring, its dynamic changes to physical activity are not well understood. We examined urine's possible antitumor capability in response to medium-level, loading-driven physical activity. Urine was collected from mice subjected to 5-minute skeletal loading and human individuals before and after 30-minute step aerobics. Six cancer cell lines (breast, prostate, and pancreas) and a mouse model of the mammary tumor were employed to evaluate the effect of urine. Compared to urine collected prior to loading, urine collected post-activity decreased the cellular viability, proliferation, migration, and invasion of tumor cells, as well as tumor weight in the mammary fat pad. Detection of urinary volatile organic compounds and ELISA assays showed that the loading-conditioned urine reduced cholesterol and elevated dopamine and melatonin. Immunohistochemical fluorescent images presented upregulation of the rate-limiting enzymes for the production of dopamine and melatonin in the brain. Molecular analysis revealed that the antitumor effect was linked to the reduction in molecular vinculin-linked molecular force as well as the downregulation of the Lrp5-CSF1-CD105 regulatory axis. Notably, the survival rate for the high expression levels of Lrp5, CSF1, and CD105 in tumor tissues was significantly lowered in the Cancer Genome Atlas database. Collectively, this study revealed that 5- or 10-minute loading-driven physical activity was sufficient to induce the striking antitumor effect by activating the neuronal signaling and repressing cholesterol synthesis. The result supported the dual role of loading-conditioned urine as a potential tumor suppressor and a source of diagnostic biomarkers.Item Mechanical stimulations can inhibit local and remote tumor progression by downregulating WISP1(Wiley, 2020-09) Liu, Shengzhi; Wu, Di; Sun, Xun; Fan, Yao; Zha, Rongrong; Jalali, Aydin; Teli, Meghana; Sano, Tomonori; Siegel, Amanda; Sudo, Akihiro; Agarwal, Mangilal; Robling, Alexander; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyMechanical stimulations can prevent bone loss, but their effects on the tumor-invaded bone or solid tumors are elusive. Here, we evaluated the effect of knee loading, dynamic loads applied to the knee, on metastasized bone and mammary tumors. In a mouse model, tumor cells were inoculated to the mammary fat pad or the proximal tibia. Daily knee loading was then applied and metabolic changes were monitored mainly through urine. Urine samples were also collected from human subjects before and after step aerobics. The result showed that knee loading inhibited tumor progression in the loaded tibia. Notably, it also reduced remotely the growth of mammary tumors. In the urine, an altered level of cholesterol was observed with an increase in calcitriol, which is synthesized from a cholesterol derivative. In urinary proteins, knee loading in mice and step aerobics in humans markedly reduced WNT1-inducible signaling pathway protein 1, WISP1, which leads to poor survival among patients with breast cancer. In the ex vivo breast cancer tissue assay, WISP1 promoted the growth of cancer fragments and upregulated tumor-promoting genes, such as Runx2, MMP9, and Snail. Collectively, the present preclinical and human study demonstrated that mechanical stimulations, such as knee loading and step aerobics, altered urinary metabolism and downregulated WISP1. The study supports the benefit of mechanical stimulations for locally and remotely suppressing tumor progression. It also indicated the role of WISP1 downregulation as a potential mechanism of loading-driven tumor suppression.Item Mechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4(Springer Nature, 2021-05-24) Fan, Yao; Zha, Rongrong; Sano, Tomohiko; Zhao, Xinyu; Liu, Shengzhi; Woollam, Mark D.; Wu, Di; Sun, Xun; Li, Kexin; Egi, Motoki; Li, Fangjia; Minami, Kazumasa; Siegel, Amanda P.; Horiuchi, Takashi; Liu, Jing; Agarwal, Mangilal; Sudo, Akihiro; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyMechanical loading to the bone is known to be beneficial for bone homeostasis and for suppressing tumor-induced osteolysis in the loaded bone. However, whether loading to a weight-bearing hind limb can inhibit distant tumor growth in the brain is unknown. We examined the possibility of bone-to-brain mechanotransduction using a mouse model of a brain tumor by focusing on the response to Lrp5-mediated Wnt signaling and dopamine in tumor cells. The results revealed that loading the tibia with elevated levels of tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis, markedly reduced the progression of the brain tumors. The simultaneous application of fluphenazine (FP), an antipsychotic dopamine modulator, enhanced tumor suppression. Dopamine and FP exerted antitumor effects through the dopamine receptors DRD1 and DRD2, respectively. Notably, dopamine downregulated Lrp5 via DRD1 in tumor cells. A cytokine array analysis revealed that the reduction in CCN4 was critical for loading-driven, dopamine-mediated tumor suppression. The silencing of Lrp5 reduced CCN4, and the administration of CCN4 elevated oncogenic genes such as MMP9, Runx2, and Snail. In summary, this study demonstrates that mechanical loading regulates dopaminergic signaling and remotely suppresses brain tumors by inhibiting the Lrp5-CCN4 axis via DRD1, indicating the possibility of developing an adjuvant bone-mediated loading therapy.Item Osteocyte-Driven Downregulation of Snail Restrains Effects of Drd2 Inhibitors on Mammary Tumor Cells(American Association for Cancer Research, 2018-07-15) Liu, Shengzhi; Fan, Yao; Chen, Andy; Jalali, Aydin; Minami, Kazumasa; Ogawa, Kazuhiko; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyWhile bone is a frequent target of breast cancer-associated metastasis, little is known about the effects of tumor-bone interactions on the efficacy of tumor-suppressing agents. Here we examined the effect of two FDA-approved dopamine modulators, fluphenazine and trifluoperazine, on mammary tumor cells, osteoclasts, osteoblasts, and osteocytes. These agents suppressed proliferation and migration of mammary tumor cells chiefly by antagonizing dopamine receptor D2 and reduced bone resorption by downregulating nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1). Three-dimensional spheroid formation assays revealed that tumor cells have high affinity to osteocytes and type I collagen, and interactions with osteocytes as well as administration of fluphenazine and trifluoperazine downregulated Snail and suppressed migratory behaviors. Unlike the inhibitory action of fluphenazine and trifluoperazine on tumor growth, tumor-osteocyte interactions stimulated tumor proliferation by upregulating NFκB and Akt. In the bone microenvironment, osteocytes downregulated Snail and acted as an attractant as well as a stimulant to mammary tumor cells. These results demonstrate that tumor-osteocyte interactions strengthen dopamine receptor-mediated suppression of tumor migration but weaken its inhibition of tumor proliferation in the osteocyte-rich bone microenvironment.Significance: These findings provide novel insight into the cellular cross-talk in the bone microevironment and the effects of dopamine modulators on mammary tumor cells and osteocytes. Cancer Res; 78(14); 3865-76. ©2018 AACR.Item Overexpression of Lrp5 enhanced the anti-breast cancer effects of osteocytes in bone(Springer Nature, 2021-07-06) Liu, Shengzhi; Wu, Di; Sun, Xun; Fan, Yao; Zha, Rongrong; Jalali, Aydin; Feng, Yan; Li, Kexin; Sano, Tomohiko; Vike, Nicole; Li, Fangjia; Rispoli, Joseph; Sudo, Akihiro; Liu, Jing; Robling, Alexander; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyOsteocytes are the most abundant cells in bone, which is a frequent site of breast cancer metastasis. Here, we focused on Wnt signaling and evaluated tumor-osteocyte interactions. In animal experiments, mammary tumor cells were inoculated into the mammary fat pad and tibia. The role of Lrp5-mediated Wnt signaling was examined by overexpressing and silencing Lrp5 in osteocytes and establishing a conditional knockout mouse model. The results revealed that administration of osteocytes or their conditioned medium (CM) inhibited tumor progression and osteolysis. Osteocytes overexpressing Lrp5 or β-catenin displayed strikingly elevated tumor-suppressive activity, accompanied by downregulation of tumor-promoting chemokines and upregulation of apoptosis-inducing and tumor-suppressing proteins such as p53. The antitumor effect was also observed with osteocyte-derived CM that was pretreated with a Wnt-activating compound. Notably, silencing Lrp5 in tumors inhibited tumor progression, while silencing Lrp5 in osteocytes in conditional knockout mice promoted tumor progression. Osteocytes exhibited elevated Lrp5 expression in response to tumor cells, implying that osteocytes protect bone through canonical Wnt signaling. Thus, our results suggest that the Lrp5/β-catenin axis activates tumor-promoting signaling in tumor cells but tumor-suppressive signaling in osteocytes. We envision that osteocytes with Wnt activation potentially offer a novel cell-based therapy for breast cancer and osteolytic bone metastasis.Item Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway(Wiley, 2019-10-04) Wang, Luqi; Wang, Yue; Chen, Andy; Teli, Meghana; Kondo, Rika; Jalali, Aydin; Fan, Yao; Liu, Shengzhi; Zhao, Xinyu; Siegel, Amanda; Minami, Kazumasa; Agarwal, Mangilal; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyBone is a frequent site of metastasis from breast cancer, and a desirable drug could suppress tumor growth as well as metastasis-linked bone loss. Currently, no drug is able to cure breast cancer–associated bone metastasis. In this study, we focused on statins that are known to inhibit cholesterol production and act as antitumor agents. After an initial potency screening of 7 U.S. Food and Drug Administration–approved statins, we examined pitavastatin as a drug candidate for inhibiting tumor and tumor-induced bone loss. In vitro analysis revealed that pitavastatin acted as an inhibitor of tumor progression by altering stress to the endoplasmic reticulum, down-regulating peroxisome proliferator–activated receptor γ, and reducing Snail and matrix metalloproteinase 9. In bone homeostasis, it blocked osteoclast development by suppressing transcription factors c-Fos and JunB, but stimulated osteoblast mineralization by regulating bone morphogenetic protein 2 and p53. In a mouse model, pitavastatin presented a dual role in tumor inhibition in the mammary fat pad, as well as in bone protection in the osteolytic tibia. In mass spectrometry–based analysis, volatile organic compounds (VOCs) that were linked to lipid metabolism and cholesterol synthesis were elevated in mice from the tumor-grown placebo group. Notably, pitavastatin-treated mice reduced specific VOCs that are linked to lipid metabolites in the mevalonate pathway. Collectively, the results lay a foundation for further investigation of pitavastatin’s therapeutic efficacy in tumor-induced bone loss, as well as VOC-based diagnosis of tumor progression and treatment efficacy.—Wang, L., Wang, Y., Chen, A., Teli, M., Kondo, R., Jalali, A., Fan, Y., Liu, S., Zhao, X., Siegel, A., Minami, K., Agarwal, M., Li, B.-Y., Yokota, H. Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway.Item Preventing tumor progression to the bone by induced tumor-suppressing MSCs(Ivyspring International, 2021-03-05) Sun, Xun; Li, Kexin; Zha, Rongrong; Liu, Shengzhi; Fan, Yao; Wu, Di; Hase, Misato; Aryal, Uma K.; Lin, Chien-Chi; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyBackground: Advanced breast cancer metastasizes to many organs including bone, but few effective treatments are available. Here we report that induced tumor-suppressing (iTS) MSCs protected bone from metastases while un-induced MSCs did not. Methods: iTS MSCs were generated by overexpressing Lrp5, β-catenin, Snail, or Akt. Their tumor-suppressing capability was tested using a mouse model of mammary tumors and bone metastasis, human breast cancer tissues and cancer cell lines. Results: In a mouse model, the induced MSC-derived conditioned medium (MSC CM) reduced mammary tumors and suppressed tumor-induced osteolysis. Tumor-promoting genes such as CXCL2 and LIF, as well as PDL1, a blocker of T-cell-based immune responses were downregulated. Proteomics analysis revealed that heat shock protein 90 (Hsp90ab1), calreticulin (Calr) and peptidylprolyl isomerase B (Ppib), which are highly expressed intracellular proteins in many cancers, were enriched in MSC CM as atypical tumor suppressors. Thus, overexpressing selected genes that were otherwise tumorigenic rendered MSCs the tumor-suppressing capability through the atypical suppressors, as well as p53 and Trail. Notably, the inhibitory effect of Lrp5- and Akt-overexpressing MSC CMs, Hsp90ab1 and Calr presented selective inhibition to tumor cells than non-tumor cells. The development of bone-resorbing osteoclasts was also suppressed by MSC CMs. Conclusion: Collectively, the results showed an anti-tumor effect of iTS MSCs and suggested novel therapeutic approaches to suppress the progression of tumors into the bone.Item Preventing tumor progression to the bone by induced tumor-suppressing MSCs: Erratum(Ivyspring International, 2022-08-18) Sun, Xun; Li, Kexin; Zha, Rongrong; Liu, Shengzhi; Fan, Yao; Wu, Di; Hase, Misato; Aryal, Uma K.; Lin, Chien-Chi; Yokota, Hiroki; Biomedical Engineering, School of Engineering and Technology[This corrects the article DOI: 10.7150/thno.58779.].