- Browse by Author
Browsing by Author "Fabio, Anthony"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Incidence and risk factors of posttraumatic seizures following traumatic brain injury: A Traumatic Brain Injury Model Systems Study(Wiley, 2016-12) Ritter, Anne C.; Wagner, Amy K.; Fabio, Anthony; Pugh, Mary Jo; Walker, William C.; Szaflarski, Jerzy P.; Zafonte, Ross D.; Brown, Allen W.; Hammond, Flora M.; Bushnik, Tamara; Johnson-Green, Douglas; Shea, Timothy; Krellman, Jason W.; Rosenthal, Joseph A.; Dreer, Laura E.; Department of Physical Medicine and Rehabilitation, School of MedicineObjective Determine incidence of posttraumatic seizure (PTS) following traumatic brain injury (TBI) among individuals with moderate-to-severe TBI requiring rehabilitation and surviving at least 5 years. Methods Using the prospective TBI Model Systems National Database, we calculated PTS incidence during acute hospitalization, and at years 1, 2, and 5 postinjury in a continuously followed cohort enrolled from 1989 to 2000 (n = 795). Incidence rates were stratified by risk factors, and adjusted relative risk (RR) was calculated. Late PTS associations with immediate (<24 h), early (24 h–7 day), or late seizures (>7 day) versus no seizure prior to discharge from acute hospitalization was also examined. Results PTS incidence during acute hospitalization was highest immediately (<24 h) post-TBI (8.9%). New onset PTS incidence was greatest between discharge from inpatient rehabilitation and year 1 (9.2%). Late PTS cumulative incidence from injury to year 1 was 11.9%, and reached 20.5% by year 5. Immediate/early PTS RR (2.04) was increased for those undergoing surgical evacuation procedures. Late PTS RR was significantly greater for individuals who self-identified as a race other than black/white (year 1 RR = 2.22), and for black individuals (year 5 RR = 3.02) versus white individuals. Late PTS was greater for individuals with subarachnoid hemorrhage (year 1 RR = 2.06) and individuals age 23–32 (year 5 RR = 2.43) and 33–44 (year 5 RR = 3.02). Late PTS RR years 1 and 5 was significantly higher for those undergoing surgical evacuation procedures (RR: 3.05 and 2.72, respectively). Significance In this prospective, longitudinal, observational study, PTS incidence was similar to that in studies published previously. Individuals with immediate/late seizures during acute hospitalization have increased late PTS risk. Race, intracranial pathologies, and neurosurgical procedures also influenced PTS RR. Further studies are needed to examine the impact of seizure prophylaxis in high-risk subgroups and to delineate contributors to race/age associations on long-term seizure outcomes.Item Prognostic models for predicting posttraumatic seizures during acute hospitalization, and at 1 and 2 years following traumatic brain injury(Wiley, 2016-09) Ritter, Anne C.; Wagner, Amy K.; Szaflarski, Jerzy P.; Brooks, Maria M.; Zafonte, Ross D.; Pugh, Mary Jo; Fabio, Anthony; Hammond, Flora M.; Dreer, Laura E.; Bushnik, Tamara; Walker, William C.; Brown, Allen W.; Johnson-Greene, Doug; Shea, Timothy; Krellman, Jason W.; Rosenthal, Joseph A.; Department of Physical Medicine and Rehabilitation, IU School of MedicineObjective Posttraumatic seizures (PTS) are well-recognized acute and chronic complications of traumatic brain injury (TBI). Risk factors have been identified, but considerable variability in who develops PTS remains. Existing PTS prognostic models are not widely adopted for clinical use and do not reflect current trends in injury, diagnosis, or care. We aimed to develop and internally validate preliminary prognostic regression models to predict PTS during acute care hospitalization, and at year 1 and year 2 postinjury. Methods Prognostic models predicting PTS during acute care hospitalization and year 1 and year 2 post-injury were developed using a recent (2011–2014) cohort from the TBI Model Systems National Database. Potential PTS predictors were selected based on previous literature and biologic plausibility. Bivariable logistic regression identified variables with a p-value < 0.20 that were used to fit initial prognostic models. Multivariable logistic regression modeling with backward-stepwise elimination was used to determine reduced prognostic models and to internally validate using 1,000 bootstrap samples. Fit statistics were calculated, correcting for overfitting (optimism). Results The prognostic models identified sex, craniotomy, contusion load, and pre-injury limitation in learning/remembering/concentrating as significant PTS predictors during acute hospitalization. Significant predictors of PTS at year 1 were subdural hematoma (SDH), contusion load, craniotomy, craniectomy, seizure during acute hospitalization, duration of posttraumatic amnesia, preinjury mental health treatment/psychiatric hospitalization, and preinjury incarceration. Year 2 significant predictors were similar to those of year 1: SDH, intraparenchymal fragment, craniotomy, craniectomy, seizure during acute hospitalization, and preinjury incarceration. Corrected concordance (C) statistics were 0.599, 0.747, and 0.716 for acute hospitalization, year 1, and year 2 models, respectively. Significance The prognostic model for PTS during acute hospitalization did not discriminate well. Year 1 and year 2 models showed fair to good predictive validity for PTS. Cranial surgery, although medically necessary, requires ongoing research regarding potential benefits of increased monitoring for signs of epileptogenesis, PTS prophylaxis, and/or rehabilitation/social support. Future studies should externally validate models and determine clinical utility.