- Browse by Author
Browsing by Author "Evans, Carey-Anne"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations(Elsevier, 2022-09) Dias, Kerith-Rae; Carlston, Colleen M.; Blok, Laura E. R.; De Hayr , Lachlan; Nawaz, Urwah; Evans, Carey-Anne; Bayrak-Toydemir, Pinar; Htun, Stephanie; Zhu, Ying; Ma, Alan; Lynch, Sally Ann; Moorwood, Catherine; Stals , Karen; Ellard, Sian; Bainbridge, Matthew N.; Friedman, Jennifer; Pappas, John G.; Rabin , Rachel; Nowak, Catherine B.; Douglas, Jessica; Wilson, Theodore E.; Guillen Sacoto, Maria J.; Mullegama, Sureni V.; Palculict , Timothy Blake; Kirk, Edwin P.; Pinner, Jason R.; Edwards, Matthew; Montanari, Francesca; Graziano, Claudio; Pippucci, Tommaso; Dingmann, Bri; Glass , Ian; Mefford , Heather C.; Shimoji , Takeyoshi; Suzuki, Toshimitsu; Yamakawa, Kazuhiro; Streff, Haley; Schaaf, Christian P.; Slavotinek, Anne M.; Voineagu , Irina; Carey, John C.; Buckley, Michael F.; Schenck, Annette; Harvey, Robert J.; Roscioli , Tony; Medical and Molecular Genetics, School of MedicinePurpose ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. Methods An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. Results ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the Drosophila ZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. Conclusion We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.Item Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome(Elsevier, 2022) Stephenson, Sarah E.M.; Costain, Gregory; Blok, Laura E.R.; Silk, Michael A.; Nguyen, Thanh Binh; Dong, Xiaomin; Alhuzaimi, Dana E.; Dowling, James J.; Walker, Susan; Amburgey, Kimberly; Hayeems, Robin Z.; Rodan, Lance H.; Schwartz, Marc A.; Picker, Jonathan; Lynch, Sally A.; Gupta, Aditi; Rasmussen, Kristen J.; Schimmenti, Lisa A.; Klee, Eric W.; Niu, Zhiyv; Agre, Katherine E.; Chilton, Ilana; Chung, Wendy K.; Revah-Politi, Anya; Au, P.Y. Billie; Griffith, Christopher; Racobaldo, Melissa; Raas-Rothschild, Annick; Zeev, Bruria Ben; Barel, Ortal; Moutton, Sebastien; Morice-Picard, Fanny; Carmignac, Virginie; Cornaton, Jenny; Marle, Nathalie; Devinsky, Orrin; Stimach, Chandler; Burns Wechsler, Stephanie; Hainline, Bryan E.; Sapp, Katie; Willems, Marjolaine; Bruel, Ange-Line; Dias, Kerith-Rae; Evans, Carey-Anne; Roscioli, Tony; Sachdev, Rani; Temple, Suzanna E.L.; Zhu, Ying; Baker, Joshua J.; Scheffer, Ingrid E.; Gardiner, Fiona J.; Schneider, Amy L.; Muir, Alison M.; Mefford, Heather C.; Crunk, Amy; Heise, Elizabeth M.; Millan, Francisca; Monaghan, Kristin G.; Person, Richard; Rhodes, Lindsay; Richards, Sarah; Wentzensen, Ingrid M.; Cogné, Benjamin; Isidor, Bertrand; Nizon, Mathilde; Vincent, Marie; Besnard, Thomas; Piton, Amelie; Marcelis, Carlo; Kato, Kohji; Koyama, Norihisa; Ogi, Tomoo; Suk-Ying Goh, Elaine; Richmond, Christopher; Amor, David J.; Boyce, Jessica O.; Morgan, Angela T.; Hildebrand, Michael S.; Kaspi, Antony; Bahlo, Melanie; Friðriksdóttir, Rún; Katrínardóttir, Hildigunnur; Sulem, Patrick; Stefánsson, Kári; Björnsson, Hans Tómas; Mandelstam, Simone; Morleo, Manuela; Mariani, Milena; TUDP Study Group; Scala, Marcello; Accogli, Andrea; Torella, Annalaura; Capra, Valeria; Wallis, Mathew; Jansen, Sandra; Weisfisz, Quinten; de Haan, Hugoline; Sadedin, Simon; Broad Center for Mendelian Genomics; Lim, Sze Chern; White, Susan M.; Ascher, David B.; Schenck, Annette; Lockhart, Paul J.; Christodoulou, John; Tan, Tiong Yang; Medical and Molecular Genetics, School of MedicineNeurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.