- Browse by Author
Browsing by Author "Enver, Tariq"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level(Nature Publishing Group, 2013) Swiers, Gemma; Baumann, Claudia; O'Rourke, John; Giannoulatou, Eleni; Taylor, Stephen; Joshi, Anagha; Moignard, Victoria; Pina, Cristina; Bee, Thomas; Kokkaliaris, Konstantinos D.; Yoshimoto, Momoko; Yoder, Mervin C.; Frampton, Jon; Schroeder, Timm; Enver, Tariq; Göttgens, Berthold; de Bruijn, Marella F. T. R.; Department of Pediatrics, IU School of MedicineHaematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 + 23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP+ HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment.Item The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition(Cell Press, 2021) Azzoni, Emanuele; Frontera, Vincent; Anselmi, Giorgio; Rode, Christina; James, Chela; Deltcheva, Elitza M.; Demian, Atanasiu S.; Brown, John; Barone, Cristiana; Patelli, Arianna; Harman, Joe R.; Nicholls, Matthew; Conway, Simon J.; Morrissey, Edward; Jacobsen, Sten Eirik W.; Sparrow, Duncan B.; Harris, Adrian L.; Enver, Tariq; de Bruijn, Marella F.T.R.; Pediatrics, School of MedicineHematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.