- Browse by Author
Browsing by Author "Engelstad, Mark"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Enhancing the Human Phenotype Ontology for Use by the Layperson(2016) Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin D.; Mungall, Christopher J.; Robinson, Peter N.; Köhler, Sebastian; Haendel, Melissa A.In rare or undiagnosed diseases, physicians rely upon genotype and phenotype information in order to compare abnormalities to other known cases and to inform diagnoses. Patients are often the best sources of information about their symptoms and phenotypes. The Human Phenotype Ontology (HPO) contains over 12,000 terms describing abnormal human phenotypes. However, the labels and synonyms in the HPO primarily use medical terminology, which can be difficult for patients and their families to understand. In order to make the HPO more accessible to non-medical experts, we systematically added new synonyms using non-expert terminology (ie, layperson terms) to the existing HPO classes or tagged existing synonyms as layperson. As a result, the HPO contains over 6,000 classes with layperson synonyms.Item The Human Phenotype Ontology in 2017(Oxford Journals, 2016-11-24) Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin D.; McMurry, Julie A.; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; Laulederkind, Stanley J. F.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa A.; Robinson, Peter N.Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.Item The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species(Oxford Journals, 2016-11-26) Mungall, Chris; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin D.; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; Xuan, Jeremy N.; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.