- Browse by Author
Browsing by Author "Eng, Kevin H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item CD8+ T cell metabolic flexibility elicited by CD28-ARS2 axis-driven alternative splicing of PKM supports antitumor immunity(Springer Nature, 2024) Holling, G. Aaron; Chavel, Colin A.; Sharda, Anand P.; Lieberman, Mackenzie M.; James, Caitlin M.; Lightman, Shivana M.; Tong, Jason H.; Qiao, Guanxi; Emmons, Tiffany R.; Giridharan, Thejaswini; Hou, Shengqi; Intlekofer, Andrew M.; Higashi, Richard M.; Fan, Teresa W. M.; Lane, Andrew N.; Eng, Kevin H.; Segal, Brahm H.; Repasky, Elizabeth A.; Lee, Kelvin P.; Olejniczak, Scott H.; Medicine, School of MedicineMetabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism. ARS2 upregulation driven by CD28 signaling reinforced splicing factor recruitment to pre-mRNAs and affected approximately one-third of T-cell activation-induced alternative splicing events. Among these effects, the CD28-ARS2 axis suppressed the expression of the M1 isoform of pyruvate kinase in favor of PKM2, a key determinant of CD8+ T-cell glucose utilization, interferon gamma production, and antitumor effector function. Importantly, PKM alternative splicing occurred independently of CD28-driven PI3K pathway activation, revealing a novel means by which costimulation reprograms glucose metabolism in CD8+ T cells.Item Mitigating the prevalence and function of myeloid-derived suppressor cells by redirecting myeloid differentiation using a novel immune modulator(BMJ, 2022) Oliver, Liliana; Alvarez, Rydell; Diaz, Raquel; Valdés, Anet; Colligan, Sean H.; Nemeth, Michael J.; Twum, Danielle Y. F.; Fernández, Audry; Fernández-Medina, Olivia; Carlson, Louise M.; Yu, Han; Eng, Kevin H.; Hensen, Mary L.; Rábade-Chediak, Maura L.; Fernández, Luis Enrique; Lee, Kelvin P.; Perez, Leslie; Muhitch, Jason B.; Mesa, Circe; Abrams, Scott I.; Medicine, School of MedicineBackground: Immune suppression is common in neoplasia and a major driver is tumor-induced myeloid dysfunction. Yet, overcoming such myeloid cell defects remains an untapped strategy to reverse suppression and improve host defense. Exposure of bone marrow progenitors to heightened levels of myeloid growth factors in cancer or following certain systemic treatments promote abnormal myelopoiesis characterized by the production of myeloid-derived suppressor cells (MDSCs) and a deficiency in antigen-presenting cell function. We previously showed that a novel immune modulator, termed 'very small size particle' (VSSP), attenuates MDSC function in tumor-bearing mice, which was accompanied by an increase in dendritic cells (DCs) suggesting that VSSP exhibits myeloid differentiating properties. Therefore, here, we addressed two unresolved aspects of the mechanism of action of this unique immunomodulatory agent: (1) does VSSP alter myelopoiesis in the bone marrow to redirect MDSC differentiation toward a monocyte/macrophage or DC fate? and (2) does VSSP mitigate the frequency and suppressive function of human tumor-induced MDSCs? Methods: To address the first question, we first used a murine model of granulocyte-colony stimulating factor-driven emergency myelopoiesis following chemotherapy-induced myeloablation, which skews myeloid output toward MDSCs, especially the polymorphonuclear (PMN)-MDSC subset. Following VSSP treatment, progenitors and their myeloid progeny were analyzed by immunophenotyping and MDSC function was evaluated by suppression assays. To strengthen rigor, we validated our findings in tumor-bearing mouse models. To address the second question, we conducted a clinical trial in patients with metastatic renal cell carcinoma, wherein 15 patients were treated with VSSP. Endpoints in this study included safety and impact on PMN-MDSC frequency and function. Results: We demonstrated that VSSP diminished PMN-MDSCs by shunting granulocyte-monocyte progenitor differentiation toward monocytes/macrophages and DCs with heightened expression of the myeloid-dependent transcription factors interferon regulatory factor-8 and PU.1. This skewing was at the expense of expansion of granulocytic progenitors and rendered the remaining MDSCs less suppressive. Importantly, these effects were also demonstrated in a clinical setting wherein VSSP monotherapy significantly reduced circulating PMN-MDSCs, and their suppressive function. Conclusions: Altogether, these data revealed VSSP as a novel regulator of myeloid biology that mitigates MDSCs in cancer patients and reinstates a more normal myeloid phenotype that potentially favors immune activation over immune suppression.Item VSSP abrogates murine ovarian tumor-associated myeloid cell-driven immune suppression and induces M1 polarization in tumor-associated macrophages from ovarian cancer patients(Springer, 2022) Khan, ANM Nazmul H.; Emmons, Tiffany R.; Magner, William J.; Alqassim, Emad; Singel, Kelly L.; Ricciuti, Jason; Eng, Kevin H.; Odunsi, Kunle; Tomasi, Thomas B.; Lee, Kelvin; Abrams, Scott I.; Mesa, Circe; Segal, Brahm H.; Medicine, School of MedicineThe ovarian tumor microenvironment (TME) is characterized by the accumulation of immunosuppressive tumor-associated macrophages (TAMs) and granulocytic cells. Very small size particles (VSSP), comprised of the ganglioside NAcGM3 and Neisseria meningitidis derived outer membrane vesicles, is being developed as a nanoparticulated modulator of innate immunity. Prior studies have shown that VSSP enhanced antigen-specific cytotoxic T cell responses and reduced the suppressive phenotype of splenic granulocytic cells in tumor-bearing mice. Here, we hypothesized that intraperitoneal VSSP would modify myeloid cell accumulation and phenotypes in the ovarian TME and abrogate suppressor function of TAMs and tumor-associated granulocytic cells. In the ID8 syngeneic model of epithelial ovarian cancer, VSSP reduced peritoneal TAMs and induced M1-like polarization in TAMs. In addition, VSSP stimulated peritoneal inflammation characterized by increased granulocytes and monocytes, including inflammatory monocytic cells. VSSP treatment resulted in peritoneal TAMs and granulocytic cells being less suppressive of ex vivo stimulated CD8+ T cell responses. VSSP alone and combined with anti-PD-1 modestly but significantly prolonged survival in tumor-bearing mice. In addition, ex vivo treatment with VSSP induced M1-like polarization in TAMs from patients with metastatic ovarian cancer and variably abrogated their suppressor phenotype. VSSP treatment also partially abrogated the induction of suppressor function in healthy donor neutrophils exposed to ascites supernatants from patients with ovarian cancer. Together, these results point to VSSP reprogramming myeloid responses resulting in abrogation of suppressive pathways and raise the potential for administration of VSSP into the TME to enhance anti-tumor immunity.