- Browse by Author
Browsing by Author "Emeriaud, Guillaume"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Early Use of Adjunctive Therapies for Pediatric Acute Respiratory Distress Syndrome: A PARDIE Study(American Thoracic Society, 2020-06) Rowan, Courtney M.; Klein, Margaret J.; Hsing, Deyin Doreen; Dahmer, Mary K.; Spinella, Philip C.; Emeriaud, Guillaume; Hassinger, Amanda B.; Piñeres-Olave, Byron E.; Flori, Heidi R.; Haileselassie, Bereketeab; Lopez-Fernandez, Yolanda M.; Chima, Ranjit S.; Shein, Steven L.; Maddux, Aline B.; Lillie, Jon; Izquierdo, Ledys; Kneyber, Martin C.J.; Smith, Lincoln S.; Khemani, Robinder G.; Thomas, Neal J.; Yehya, Nadir; Pediatrics, School of MedicineRationale: Few data exist to guide early adjunctive therapy use in pediatric acute respiratory distress syndrome (PARDS).Objectives: To describe contemporary use of adjunctive therapies for early PARDS as a framework for future investigations.Methods: This was a preplanned substudy of a prospective, international, cross-sectional observational study of children with PARDS from 100 centers over 10 study weeks.Measurements and Main Results: We investigated six adjunctive therapies for PARDS: continuous neuromuscular blockade, corticosteroids, inhaled nitric oxide (iNO), prone positioning, high-frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation. Almost half (45%) of children with PARDS received at least one therapy. Variability was noted in the median starting oxygenation index of each therapy; corticosteroids started at the lowest oxygenation index (13.0; interquartile range, 7.6-22.0) and HFOV at the highest (25.7; interquartile range, 16.7-37.3). Continuous neuromuscular blockade was the most common, used in 31%, followed by iNO (13%), corticosteroids (10%), prone positioning (10%), HFOV (9%), and extracorporeal membrane oxygenation (3%). Steroids, iNO, and HFOV were associated with comorbidities. Prone positioning and HFOV were more common in middle-income countries and less frequently used in North America. The use of multiple ancillary therapies increased over the first 3 days of PARDS, but there was not an easily identifiable pattern of combination or order of use.Conclusions: The contemporary description of prevalence, combinations of therapies, and oxygenation threshold for which the therapies are applied is important for design of future studies. Region of the world, income, and comorbidities influence adjunctive therapy use and are important variables to include in PARDS investigations.Item Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2)(Wolters Kluwer, 2023) Emeriaud, Guillaume; López-Fernández, Yolanda M.; Iyer, Narayan Prabhu; Bembea, Melania M.; Agulnik, Asya; Barbaro, Ryan P.; Baudin, Florent; Bhalla, Anoopindar; de Carvalho, Werther Brunow; Carroll, Christopher L.; Cheifetz, Ira M.; Chisti, Mohammod J.; Cruces, Pablo; Curley, Martha A. Q.; Dahmer, Mary K.; Dalton, Heidi J.; Erickson, Simon J.; Essouri, Sandrine; Fernández, Analía; Flori, Heidi R.; Grunwell, Jocelyn R.; Jouvet, Philippe; Killien, Elizabeth Y.; Kneyber, Martin C. J.; Kudchadkar, Sapna R.; Korang, Steven Kwasi; Lee, Jan Hau; Macrae, Duncan J.; Maddux, Aline; Alapont, Vicent Modesto I.; Morrow, Brenda M.; Nadkarni, Vinay M.; Napolitano, Natalie; Newth, Christopher J. L.; Pons-Odena, Martí; Quasney, Michael W.; Rajapreyar, Prakadeshwari; Rambaud, Jerome; Randolph, Adrienne G.; Rimensberger, Peter; Rowan, Courtney M.; Sanchez-Pinto, L. Nelson; Sapru, Anil; Sauthier, Michael; Shein, Steve L.; Smith, Lincoln S.; Steffen, Katerine; Takeuchi, Muneyuki; Thomas, Neal J.; Tse, Sze Man; Valentine, Stacey; Ward, Shan; Watson, R. Scott; Yehya, Nadir; Zimmerman, Jerry J.; Khemani, Robinder G.; Pediatrics, School of MedicineObjectives: We sought to update our 2015 work in the Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) guidelines for the diagnosis and management of pediatric acute respiratory distress syndrome (PARDS), considering new evidence and topic areas that were not previously addressed. Design: International consensus conference series involving 52 multidisciplinary international content experts in PARDS and four methodology experts from 15 countries, using consensus conference methodology, and implementation science. Setting: Not applicable. Patients: Patients with or at risk for PARDS. Interventions: None. Measurements and main results: Eleven subgroups conducted systematic or scoping reviews addressing 11 topic areas: 1) definition, incidence, and epidemiology; 2) pathobiology, severity, and risk stratification; 3) ventilatory support; 4) pulmonary-specific ancillary treatment; 5) nonpulmonary treatment; 6) monitoring; 7) noninvasive respiratory support; 8) extracorporeal support; 9) morbidity and long-term outcomes; 10) clinical informatics and data science; and 11) resource-limited settings. The search included MEDLINE, EMBASE, and CINAHL Complete (EBSCOhost) and was updated in March 2022. Grading of Recommendations, Assessment, Development, and Evaluation methodology was used to summarize evidence and develop the recommendations, which were discussed and voted on by all PALICC-2 experts. There were 146 recommendations and statements, including: 34 recommendations for clinical practice; 112 consensus-based statements with 18 on PARDS definition, 55 on good practice, seven on policy, and 32 on research. All recommendations and statements had agreement greater than 80%. Conclusions: PALICC-2 recommendations and consensus-based statements should facilitate the implementation and adherence to the best clinical practice in patients with PARDS. These results will also inform the development of future programs of research that are crucially needed to provide stronger evidence to guide the pediatric critical care teams managing these patients.Item Executive Summary: International Clinical Practice Guidelines for Pediatric Ventilator Liberation, A PALISI Network Document(American Thoracic Society Journals, 2022-08-15) Abu-Sultaneh, Samer; Iyer, Narayan Prabhu; Fernández, Analía; Gaies, Michael; González-Dambrauskas, Sebastián; Hotz, Justin Christian; Kneyber, Martin C.J.; López-Fernández, Yolanda M.; Rotta, Alexandre T.; Werho, David K.; Baranwal, Arun Kumar; Blackwood, Bronagh; Craven, Hannah J.; Curley, Martha A.Q.; Essouri, Sandrine; Fioretto, Jose Roberto; Hartmann, Silvia M.M.; Jouvet, Philippe; Korang, Steven Kwasi; Rafferty, Gerrard F.; Ramnarayan, Padmanabhan; Rose, Louise; Tume, Lyvonne N.; Whipple, Elizabeth C.; Wong, Judith Ju Ming; Emeriaud, Guillaume; Mastropietro, Christopher W; Napolitano, Natalie; Newth, Christopher J.L.; Khemani, Robinder G.RATIONALE: Pediatric specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients' readiness for extubation. METHODS: Twenty-six international experts comprised a multi-professional panel to establish pediatric specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. Systematic review was conducted for questions which did not meet an a-priori threshold of ≥80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence, drafted, and voted on the recommendations. MEASUREMENTS AND MAIN RESULTS: Three questions related to systematic screening, using an extubation readiness testing bundle and use of a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of ≥80% agreement. For the remaining 8 questions, 5 systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials; measures of respiratory muscle strength; assessment of risk of post-extubation upper airway obstruction and its prevention; use of post-extubation non-invasive respiratory support; and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. CONCLUSION: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.Item Executive Summary: International Clinical Practice Guidelines for Pediatric Ventilator Liberation, A Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Document(American Thoracic Society, 2023) Abu-Sultaneh, Samer; Iyer, Narayan Prabhu; Fernández, Analía; Gaies, Michael; González-Dambrauskas, Sebastián; Hotz, Justin Christian; Kneyber, Martin C. J.; López-Fernández, Yolanda M.; Rotta, Alexandre T.; Werho, David K.; Baranwal, Arun Kumar; Blackwood, Bronagh; Craven, Hannah J.; Curley, Martha A. Q.; Essouri, Sandrine; Fioretto, Jose Roberto; Hartmann, Silvia M. M.; Jouvet, Philippe; Korang, Steven Kwasi; Rafferty, Gerrard F.; Ramnarayan, Padmanabhan; Rose, Louise; Tume, Lyvonne N.; Whipple, Elizabeth C.; Wong, Judith J. M.; Emeriaud, Guillaume; Mastropietro, Christopher W.; Napolitano, Natalie; Newth, Christopher J. L.; Khemani, Robinder G.; Pediatrics, School of MedicineRationale: Pediatric-specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients’ readiness for extubation. Methods: Twenty-six international experts comprised a multiprofessional panel to establish pediatrics-specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. A systematic review was conducted for questions that did not meet an a priori threshold of ⩾80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence and drafted and voted on the recommendations. Measurements and Main Results: Three questions related to systematic screening using an extubation readiness testing bundle and a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of ⩾80% agreement. For the remaining eight questions, five systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials, measures of respiratory muscle strength, assessment of risk of postextubation upper airway obstruction and its prevention, use of postextubation noninvasive respiratory support, and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. Conclusions: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.Item Mechanical power in pediatric acute respiratory distress syndrome: a PARDIE study(Springer Nature, 2022-01-03) Bhalla, Anoopindar K.; Klein, Margaret J.; Alapont, Vicent Modesto I.; Emeriaud, Guillaume; Kneyber, Martin C. J.; Medina, Alberto; Cruces, Pablo; Diaz, Franco; Takeuchi, Muneyuki; Maddux, Aline B.; Mourani, Peter M.; Camilo, Cristina; White, Benjamin R.; Yehya, Nadir; Pappachan, John; Di Nardo, Matteo; Shein, Steven; Newth, Christopher; Khemani, Robinder; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineBackground: Mechanical power is a composite variable for energy transmitted to the respiratory system over time that may better capture risk for ventilator-induced lung injury than individual ventilator management components. We sought to evaluate if mechanical ventilation management with a high mechanical power is associated with fewer ventilator-free days (VFD) in children with pediatric acute respiratory distress syndrome (PARDS). Methods: Retrospective analysis of a prospective observational international cohort study. Results: There were 306 children from 55 pediatric intensive care units included. High mechanical power was associated with younger age, higher oxygenation index, a comorbid condition of bronchopulmonary dysplasia, higher tidal volume, higher delta pressure (peak inspiratory pressure-positive end-expiratory pressure), and higher respiratory rate. Higher mechanical power was associated with fewer 28-day VFD after controlling for confounding variables (per 0.1 J·min-1·Kg-1 Subdistribution Hazard Ratio (SHR) 0.93 (0.87, 0.98), p = 0.013). Higher mechanical power was not associated with higher intensive care unit mortality in multivariable analysis in the entire cohort (per 0.1 J·min-1·Kg-1 OR 1.12 [0.94, 1.32], p = 0.20). But was associated with higher mortality when excluding children who died due to neurologic reasons (per 0.1 J·min-1·Kg-1 OR 1.22 [1.01, 1.46], p = 0.036). In subgroup analyses by age, the association between higher mechanical power and fewer 28-day VFD remained only in children < 2-years-old (per 0.1 J·min-1·Kg-1 SHR 0.89 (0.82, 0.96), p = 0.005). Younger children were managed with lower tidal volume, higher delta pressure, higher respiratory rate, lower positive end-expiratory pressure, and higher PCO2 than older children. No individual ventilator management component mediated the effect of mechanical power on 28-day VFD. Conclusions: Higher mechanical power is associated with fewer 28-day VFDs in children with PARDS. This association is strongest in children < 2-years-old in whom there are notable differences in mechanical ventilation management. While further validation is needed, these data highlight that ventilator management is associated with outcome in children with PARDS, and there may be subgroups of children with higher potential benefit from strategies to improve lung-protective ventilation. Take home message: Higher mechanical power is associated with fewer 28-day ventilator-free days in children with pediatric acute respiratory distress syndrome. This association is strongest in children <2-years-old in whom there are notable differences in mechanical ventilation management.Item Noninvasive Ventilation for Pediatric Acute Respiratory Distress Syndrome: Experience From the 2016/2017 Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology Prospective Cohort Study(Wolters Kluwer, 2023) Emeriaud, Guillaume; Pons-Òdena, Marti; Bhalla, Anoopindar K.; Shein, Steven L.; Killien, Elizabeth Y.; Modesto i Alapont, Vicent; Rowan, Courtney; Baudin, Florent; Lin, John C.; Grégoire, Gabrielle; Napolitano, Natalie; Mayordomo-Colunga, Juan; Diaz, Franco; Cruces, Pablo; Medina, Alberto; Smith, Lincoln; Khemani, Robinder G.; Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology (PARDIE) Investigators; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineObjectives: The worldwide practice and impact of noninvasive ventilation (NIV) in pediatric acute respiratory distress syndrome (PARDS) is unknown. We sought to describe NIV use and associated clinical outcomes in PARDS. Design: Planned ancillary study to the 2016/2017 prospective Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology study. Setting: One hundred five international PICUs. Patients: Patients with newly diagnosed PARDS admitted during 10 study weeks. Interventions: None. Measurements and main results: Children were categorized by their respiratory support at PARDS diagnosis into NIV or invasive mechanical ventilation (IMV) groups. Of 708 subjects with PARDS, 160 patients (23%) received NIV at PARDS diagnosis (NIV group). NIV failure rate (defined as tracheal intubation or death) was 84 of 160 patients (53%). Higher nonrespiratory pediatric logistic organ dysfunction (PELOD-2) score, Pa o2 /F io2 was less than 100 at PARDS diagnosis, immunosuppression, and male sex were independently associated with NIV failure. NIV failure was 100% among patients with nonrespiratory PELOD-2 score greater than 2, Pa o2 /F io2 less than 100, and immunosuppression all present. Among patients with Pa o2 /F io2 greater than 100, children in the NIV group had shorter total duration of NIV and IMV, than the IMV at initial diagnosis group. We failed to identify associations between NIV use and PICU survival in a multivariable Cox regression analysis (hazard ratio 1.04 [95% CI, 0.61-1.80]) or mortality in a propensity score matched analysis ( p = 0.369). Conclusions: Use of NIV at PARDS diagnosis was associated with shorter exposure to IMV in children with mild to moderate hypoxemia. Even though risk of NIV failure was high in some children, we failed to identify greater hazard of mortality in these patients.Item Operational Definitions related to Pediatric Ventilator Liberation(Elsevier, 2022-12-20) Abu-Sultaneh, Samer; Iyer, Narayan Prabhu; Fernández, Analía; Gaies, Michael; González-Dambrauskas, Sebastián; Hotz, Justin Christian; Kneyber, Martin C.J.; López-Fernández, Yolanda M.; Rotta, Alexandre T.; Werho, David K.; Baranwal, Arun Kumar; Blackwood, Bronagh; Craven, Hannah J.; Curley, Martha A.Q.; Essouri, Sandrine; Fioretto, Jose Roberto; Hartmann, Silvia M.M.; Jouvet, Philippe; Korang, Steven Kwasi; Rafferty, Gerrard F.; Ramnarayan, Padmanabhan; Rose, Louise; Tume, Lyvonne N.; Whipple, Elizabeth C.; Wong, Judith Ju Ming; Emeriaud, Guillaume; Mastropietro, Christopher W.; Napolitano, Natalie; Newth, Christopher J.L.; Khemani, Robinder G.BACKGROUND: Common, operational definitions are crucial to assess interventions and outcomes related to pediatric mechanical ventilation. These definitions can reduce unnecessary variability amongst research and quality improvement efforts, to ensure findings are generalizable and can be pooled to establish best practices. RESEARCH QUESTION: Can we establish operational definitions for key elements related to pediatric ventilator liberation using a combination of detailed literature review and consensus-based approaches? STUDY DESIGN AND METHODS: A panel of 26 international experts in pediatric ventilator liberation, two methodologists and two librarians conducted systematic reviews on eight topic areas related to pediatric ventilator liberation. Through a series of virtual meetings, we established draft definitions which were voted upon using an anonymous web-based process. Definitions were revised by incorporating extracted data gathered during the systematic review and discussed in another consensus meeting. A second round of voting was conducted to confirm the final definitions. RESULTS: In eight topic areas identified by the experts, 16 preliminary definitions were established. Based on initial discussion and the first round of voting, modifications were suggested for 11 of the 16 definitions. There was significant variability in how these items were defined in the literature reviewed. The final round of voting achieved ≥80% agreement for all 16 definitions in the following areas: what constitutes respiratory support (invasive mechanical ventilation and non-invasive respiratory support), liberation and failed attempts to liberate from invasive mechanical ventilation, liberation from respiratory support, duration of non-invasive respiratory support, total duration of invasive mechanical ventilation, spontaneous breathing trials, extubation readiness testing, 28-ventilator free days, and planned vs rescue use of post-extubation non-invasive respiratory support. INTERPRETATION: We propose these consensus-based definitions for elements of pediatric ventilator liberation, informed by evidence, be used for future quality improvement initiatives and research studies to improve generalizability, and facilitate comparison.Item The Use and Duration of Preintubation Respiratory Support Is Associated With Increased Mortality in Immunocompromised Children With Acute Respiratory Failure(Wolters Kluwer, 2022) Lindell, Robert B.; Fitzgerald, Julie C.; Rowan, Courtney M.; Flori, Heidi R.; Di Nardo, Matteo; Napolitano, Natalie; Traynor, Danielle M.; Lenz, Kyle B.; Emeriaud, Guillaume; Jeyapalan, Asumthia; Nishisaki, Akira; National Emergency Airway Registry for Children (NEAR4KIDS); Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineObjectives: To determine the association between preintubation respiratory support and outcomes in patients with acute respiratory failure and to determine the impact of immunocompromised (IC) diagnoses on outcomes after adjustment for illness severity. Design: Retrospective multicenter cohort study. Setting: Eighty-two centers in the Virtual Pediatric Systems database. Patients: Children 1 month to 17 years old intubated in the PICU who received invasive mechanical ventilation (IMV) for greater than or equal to 24 hours. Interventions: None. Measurements and main results: High-flow nasal cannula (HFNC) or noninvasive positive-pressure ventilation (NIPPV) or both were used prior to intubation in 1,825 (34%) of 5,348 PICU intubations across 82 centers. When stratified by IC status, 50% of patients had no IC diagnosis, whereas 41% were IC without prior hematopoietic cell transplant (HCT) and 9% had prior HCT. Compared with patients intubated without prior support, preintubation exposure to HFNC (adjusted odds ratio [aOR], 1.33; 95% CI, 1.10-1.62) or NIPPV (aOR, 1.44; 95% CI, 1.20-1.74) was associated with increased odds of PICU mortality. Within subgroups of IC status, preintubation respiratory support was associated with increased odds of PICU mortality in IC patients (HFNC: aOR, 1.50; 95% CI, 1.11-2.03; NIPPV: aOR, 1.76; 95% CI, 1.31-2.35) and HCT patients (HFNC: aOR, 1.75; 95% CI, 1.07-2.86; NIPPV: aOR, 1.85; 95% CI, 1.12-3.02) compared with IC/HCT patients intubated without prior respiratory support. Preintubation exposure to HFNC/NIPPV was not associated with mortality in patients without an IC diagnosis. Duration of HFNC/NIPPV greater than 6 hours was associated with increased mortality in IC HCT patients (HFNC: aOR, 2.41; 95% CI, 1.05-5.55; NIPPV: aOR, 2.53; 95% CI, 1.04-6.15) and patients compared HCT patients with less than 6-hour HFNC/NIPPV exposure. After adjustment for patient and center characteristics, both preintubation HFNC/NIPPV use (median, 15%; range, 0-63%) and PICU mortality varied by center. Conclusions: In IC pediatric patients, preintubation exposure to HFNC and/or NIPPV is associated with increased odds of PICU mortality, independent of illness severity. Longer duration of exposure to HFNC/NIPPV prior to IMV is associated with increased mortality in HCT patients.