- Browse by Author
Browsing by Author "Eipper, Betty A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Germline loss-of-function PAM variants are enriched in subjects with pituitary hypersecretion(Cold Spring Harbor Laboratory, 2023-01-20) Trivellin, Giampaolo; Daly, Adrian F.; Hernández-Ramírez, Laura C.; Araldi, Elisa; Tatsi, Christina; Dale, Ryan K.; Fridell, Gus; Mittal, Arjun; Faucz, Fabio R.; Iben, James R.; Li, Tianwei; Vitali, Eleonora; Stojilkovic, Stanko S.; Kamenicky, Peter; Villa, Chiara; Baussart, Bertrand; Chittiboina, Prashant; Toro, Camilo; Gahl, William A.; Eugster, Erica A.; Naves, Luciana A.; Jaffrain-Rea, Marie-Lise; de Herder, Wouter W.; Neggers, Sebastian Jcmm; Petrossians, Patrick; Beckers, Albert; Lania, Andrea G.; Mains, Richard E.; Eipper, Betty A.; Stratakis, Constantine A.; Pediatrics, School of MedicinePituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. Following the identification of a loss-of-function variant (p.Arg703Gln) in the PAM gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated pituitary adenomas kindreds for PAM variants. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. No germline CNVs or somatic single nucleotide variants (SNVs) were identified. We detected seven likely pathogenic heterozygous missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with GH excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.−133T>C and p.His778fs), or with different types of PAs (c.−361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, for splicing by minigene assays, and for amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs to diagnoses linked to pituitary gland hyperfunction. Identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.Item The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts(Elsevier B.V., 2014-03) Huang, Su; Eleniste, Pierre P.; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A.; Mains, Richard E.; Allen, Matthew R.; Bruzzaniti, Angela; Department of Oral Biology, IU School of DentistryBone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36 week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14 week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass.