- Browse by Author
Browsing by Author "Eggleson, Kathleen K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mosquito control practices and perceptions: An analysis of economic stakeholders during the Zika epidemic in Belize, Central America(Public Library of Science, 2018-07-19) Duman-Scheel, Molly; Eggleson, Kathleen K.; Achee, Nicole L.; Grieco, John P.; Hapairai, Limb K.; Medical and Molecular Genetics, School of MedicineThe tourist-based economy of Belize, a tropical hub for eco-tourism, is at high risk to be disproportionately impacted by established and emerging mosquito-borne diseases such as Zika. An online survey was used to probe economic stakeholders working in the Belize tourism industry about their mosquito control practices and perceptions. Responses demonstrated that the respondents have good working knowledge of mosquitoes and mosquito-borne illnesses. Most businesses surveyed engage in some means of mosquito control, either through larval source reduction or use of insecticides on the premises. Larvicide use was significantly correlated with a general willingness to use insecticides, as well as belief that treatment of water will reduce mosquito densities and disease transmission. A majority of the respondents agreed that they would be interested in buying a new larvicide to be used on the business premises if it were shown to be safe and effective. The safety of mosquito control products for humans, animals, plants, and the environment in general, followed by product effectiveness, are the most critical determinants of mosquito control purchasing decisions. A majority of respondents agreed that control of mosquitoes and mosquito-borne illnesses is central to the success of their tourist-based industry. Respondents expressed significant concern that the Zika epidemic was over-sensationalized by the media, and that this negatively impacted their livelihoods. The respondents, many of whom are associated with eco/sustainable businesses, also voiced concerns that chemical pesticides could have a negative impact on human health and the environment and expressed a desire for balance between effective mosquito control and preservation of the rich biodiversity of Belize. This study provided a framework for further engagement activities in Belize and other Caribbean nations, uncovered both concerns and support for emerging mosquito control technologies, and revealed opportunities for further debate and educational outreach efforts.Item Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality(BioMed Central, 2017-11-13) Mysore, Keshava; Hapairai, Limb K.; Sun, Longhua; Harper, Elizabeth I.; Chen, Yingying; Eggleson, Kathleen K.; Realey, Jacob S.; Scheel, Nicholas D.; Severson, David W.; Wei, Na; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineBackground Although larviciding can reduce the number of outdoor biting malaria vector mosquitoes, which may help to prevent residual malaria transmission, the current larvicide repertoire is faced with great challenges to sustainability. The identification of new effective, economical, and biorational larvicides could facilitate maintenance and expansion of the practice of larviciding in integrated malaria vector mosquito control programmes. Interfering RNA molecules represent a novel class of larvicides with untapped potential for sustainable mosquito control. This investigation tested the hypothesis that short interfering RNA molecules can be used as mosquito larvicides. Results A small interfering RNA (siRNA) screen for larval lethal genes identified siRNAs corresponding to the Anopheles gambiae suppressor of actin (Sac1), leukocyte receptor complex member (lrc), and offtrack (otk) genes. Saccharomyces cerevisiae (baker’s yeast) was engineered to produce short hairpin RNAs (shRNAs) for silencing of these genes. Feeding larvae with the engineered yeasts resulted in silenced target gene expression, a severe loss of neural synapses in the larval brain, and high levels of larval mortality. The larvicidal activities of yeast interfering RNA larvicides were retained following heat inactivation and drying of the yeast into user-friendly tablet formulations that induced up to 100% larval mortality in laboratory trials. Conclusions Ready-to-use dried inactivated yeast interfering RNA larvicide tablets may someday be an effective and inexpensive addition to malaria mosquito control programmes and a valuable, biorational tool for addressing residual malaria transmission. Electronic supplementary material The online version of this article (10.1186/s12936-017-2112-5) contains supplementary material, which is available to authorized users.