- Browse by Author
Browsing by Author "Egan, Patrick"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Effect of Diluted Penetration Enhancer in Nebulized Mist versus Liquid Drop Preparation Forms on Retrobulbar Blood Flow in Healthy Human Subjects(MDPI, 2012-08-08) Primus, Sally; Januleviciene, Ingrida; Siesky, Brent; Gerber, Austin; Egan, Patrick; Amireskandari, Annahita; Siaudvytyte, Lina; Barsauskaite, Ruta; Harris, Alon; Ophthalmology, School of MedicineThe aim of this study was to compare the effects of nebulized mist and liquid drop applications on retrobulbar blood flow. A prospective, non-randomized clinical trial was used to collect data from 40 healthy human eyes. Color Doppler Imaging determined peak systolic (PSV) and end diastolic (EDV) blood flow velocities and resistance index (RI) in the ophthalmic artery after both applications. Measurements were taken at baseline and at 1 min post-treatment in both eyes with 5 min measurements in the treatment eye only. p values ≤ 0.05 were considered statistically significant. Mist application to treatment eye produced an increase in 1 min and 5 min PSV and EDV (0.001 < p < 0.03) and a decrease in 5 min RI (p = 0.01), with no significant changes in PSV, EDV or RI of control eye or in treatment eye 1 min RI (p > 0.05). Drop application to treatment eye produced an increase in PSV (p < 0.001) and EDV (p = 0.01) at 1 min, with an increase in control eye 1 min PSV and EDV (p = 0.03). There were no statistically significant changes in treatment eye PSV, EDV and RI after 5 min (p > 0.05). The use of nebulized mist may provide an effective alternative to liquid drop medication application.Item Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance(Association for Research in Vision and Opthalmology, 2014-07) Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua; Department of Mathematical Sciences, School of SciencePURPOSE: This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. METHODS: A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. RESULTS: The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. CONCLUSIONS: The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics.