- Browse by Author
Browsing by Author "Edmondson, David A."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: an EEG-MRS study(BMC, 2021-01-06) Pierce, Sarah; Kadlaskar, Girija; Edmondson, David A.; McNally Keehn, Rebecca; Dydak, Ulrike; Keehn, Brandon; Pediatrics, School of MedicineBackground: Autism spectrum disorder (ASD) is associated with hyper- and/or hypo-sensitivity to sensory input. Spontaneous alpha power, which plays an important role in shaping responsivity to sensory information, is reduced across the lifespan in individuals with ASD. Furthermore, an excitatory/inhibitory imbalance has also been linked to sensory dysfunction in ASD and has been hypothesized to underlie atypical patterns of spontaneous brain activity. The present study examined whether resting-state alpha power differed in children with ASD as compared to TD children, and investigated the relationships between alpha levels, concentrations of excitatory and inhibitory neurotransmitters, and atypical sensory processing in ASD. Methods: Participants included thirty-one children and adolescents with ASD and thirty-one age- and IQ-matched typically developing (TD) participants. Resting-state electroencephalography (EEG) was used to obtain measures of alpha power. A subset of participants (ASD = 16; TD = 16) also completed a magnetic resonance spectroscopy (MRS) protocol in order to measure concentrations of excitatory (glutamate + glutamine; Glx) and inhibitory (GABA) neurotransmitters. Results: Children with ASD evidenced significantly decreased resting alpha power compared to their TD peers. MRS estimates of GABA and Glx did not differ between groups with the exception of Glx in the temporal-parietal junction. Inter-individual differences in alpha power within the ASD group were not associated with region-specific concentrations of GABA or Glx, nor were they associated with sensory processing differences. However, atypically decreased Glx was associated with increased sensory impairment in children with ASD. Conclusions: Although we replicated prior reports of decreased alpha power in ASD, atypically reduced alpha was not related to neurochemical differences or sensory symptoms in ASD. Instead, reduced Glx in the temporal-parietal cortex was associated with greater hyper-sensitivity in ASD. Together, these findings may provide insight into the neural underpinnings of sensory processing differences present in ASD.Item Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites(Elsevier, 2019-05) Mikkelsen, Mark; Rimbault, Daniel L.; Barker, Peter B.; Bhattacharyya, Pallab K.; Brix, Maiken K.; Buur, Pieter F.; Cecil, Kim M.; Chan, Kimberly L.; Chen, David Y.-T.; Craven, Alexander R.; Cuypers, Koen; Dacko, Michael; Duncan, Niall W.; Dydak, Ulrike; Edmondson, David A.; Ende, Gabriele; Ersland, Lars; Forbes, Megan A.; Gao, Fei; Greenhouse, Ian; Harris, Ashley D.; He, Naying; Heba, Stefanie; Hoggard, Nigel; Hsu, Tun-Wei; Jansen, Jacobus F. A.; Kangarlu, Alayar; Lange, Thomas; Lebel, R. Marc; Li, Yan; Lin, Chien-Yuan E.; Liou, Jy-Kang; Lirng, Jiing-Feng; Liu, Feng; Long, Joanna R.; Ma, Ruoyun; Maes, Celine; Moreno-Ortega, Marta; Murray, Scott O.; Noah, Sean; Noeske, Ralph; Noseworthy, Michael D.; Oeltzschner, Georg; Porges, Eric C.; Prisciandaro, James J.; Puts, Nicolaas A.; Roberts, Timothy P. L.; Sack, Markus; Sailasuta, Napapon; Saleh, Muhammad G.; Schallmo, Michael-Paul; Simard, Nicholas; Stoffers, Diederick; Swinnen, Stephan P.; Tegenthoff, Martin; Truong, Peter; Wang, Guangbin; Wilkinson, Iain D.; Wittsack, Hans-Jörg; Woods, Adam J.; Xu, Hongmin; Yan, Fuhua; Zhang, Chencheng; Zipunnikov, Vadim; Zöllner, Helge J.; Edden, Richard A. E.; Radiology and Imaging Sciences, School of MedicineAccurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels.Item Comparison of Multivendor Single-Voxel MR Spectroscopy Data Acquired in Healthy Brain at 26 Sites(Radiological Society of North America, 2020-04) Považan, Michal; Mikkelsen, Mark; Berrington, Adam; Bhattacharyya, Pallab K.; Brix, Maiken K.; Buur, Pieter F.; Cecil, Kim M.; Chan, Kimberly L.; Chen, David Y.T.; Craven, Alexander R.; Cuypers, Koen; Dacko, Michael; Duncan, Niall W.; Dydak, Ulrike; Edmondson, David A.; Ende, Gabriele; Ersland, Lars; Forbes, Megan A.; Gao, Fei; Greenhouse, Ian; Harris, Ashley D.; He, Naying; Heba, Stefanie; Hoggard, Nigel; Hsu, Tun-Wei; Jansen, Jacobus F.A.; Kangarlu, Alayar; Lange, Thomas; Lebel, R. Marc; Li, Yan; Lin, Chien-Yuan E.; Liou, Jy-Kang; Lirng, Jiing-Feng; Liu, Feng; Long, Joanna R.; Ma, Ruoyun; Maes, Celine; Moreno-Ortega, Marta; Murray, Scott O.; Noah, Sean; Noeske, Ralph; Noseworthy, Michael D.; Oeltzschner, Georg; Porges, Eric C.; Prisciandaro, James J.; Puts, Nicolaas A.J.; Roberts, Timothy P.L.; Sack, Markus; Sailasuta, Napapon; Saleh, Muhammad G.; Schallmo, Michael-Paul; Simard, Nicholas; Stoffers, Diederick; Swinnen, Stephan P.; Tegenthoff, Martin; Truong, Peter; Wang, Guangbin; Wilkinson, Iain D.; Wittsack, Hans-Jörg; Woods, Adam J.; Xu, Hongmin; Yan, Fuhua; Zhang, Chencheng; Zipunnikov, Vadim; Zöllner, Helge J.; Edden, Richard A.E.; Barker, Peter B.; Radiology and Imaging Sciences, School of MedicineThe hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4-5.0 Hz), signal-to-noise ratio (range, 174-289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols.Item Impairment of Motor Function Correlates with Neurometabolite and Brain Iron Alterations in Parkinson’s Disease(MDPI, 2019-01-29) Pesch, Beate; Casjens, Swaantje; Woitalla, Dirk; Dharmadhikari, Shalmali; Edmondson, David A.; Zella, Maria Angela Samis; Lehnert, Martin; Lotz, Anne; Herrmann, Lennard; Muhlack, Siegfried; Kraus, Peter; Yeh, Chien-Lin; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Gold, Ralf; van Thriel, Christoph; Brüning, Thomas; Tönges, Lars; Dydak, Ulrike; Department of Radiology and Imaging Sciences, Indiana University School of MedicineWe took advantage of magnetic resonance imaging (MRI) and spectroscopy (MRS) as non-invasive methods to quantify brain iron and neurometabolites, which were analyzed along with other predictors of motor dysfunction in Parkinson's disease (PD). Tapping hits, tremor amplitude, and the scores derived from part III of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS3 scores) were determined in 35 male PD patients and 35 controls. The iron-sensitive MRI relaxation rate R2* was measured in the globus pallidus and substantia nigra. γ-aminobutyric acid (GABA)-edited and short echo-time MRS was used for the quantification of neurometabolites in the striatum and thalamus. Associations of R2*, neurometabolites, and other factors with motor function were estimated with Spearman correlations and mixed regression models to account for repeated measurements (hands, hemispheres). In PD patients, R2* and striatal GABA correlated with MDS-UPDRS3 scores if not adjusted for age. Patients with akinetic-rigid PD subtype (N = 19) presented with lower creatine and striatal glutamate and glutamine (Glx) but elevated thalamic GABA compared to controls or mixed PD subtype. In PD patients, Glx correlated with an impaired dexterity when adjusted for covariates. Elevated myo-inositol was associated with more tapping hits and lower MDS-UPDRS3 scores. Our neuroimaging study provides evidence that motor dysfunction in PD correlates with alterations in brain iron and neurometabolites.Item A Magnetic Resonance Spectroscopy Study of Superior Visual Search Abilities in Children with Autism Spectrum Disorder(Wiley, 2020-04) Edmondson, David A.; Xia, Pingyu; McNally Keehn, Rebecca; Dydak, Ulrike; Keehn, Brandon; Radiology and Imaging Sciences, School of MedicineAlthough diagnosed on the basis of deficits in social communication and interaction, autism spectrum disorder (ASD) is also characterized by superior performance on a variety of visuospatial tasks, including visual search. In neurotypical individuals, region-specific concentrations of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) are associated with individual differences in attention and perception. While it has been hypothesized that ASD may be associated with an excitatory-inhibitory imbalance, it remains unclear how this may contribute to accelerated visual search performance in individuals with ASD. To investigate this, 21 children with ASD and 20 typically developing children participated in a visual search task and a magnetic resonance spectroscopy study to detect neurochemical concentrations, including GABA. Region-specific neurochemicals were examined in the right frontal eye fields, right temporal-parietal junction (rTPJ), and bilateral visual cortex (VIS). GABA concentrations did not differ between groups; however, in children with ASD, greater GABA concentration in the VIS was related to more efficient search. Additionally, lower VIS GABA levels were also associated with increased social impairment. Finally, we found reduced N-acetyl aspartate, total creatine, glutamate and glutamine (Glx), GABA/Glx in the rTPJ, suggestive of neuronal dysfunction in a critical network hub. Our results show that GABA concentrations in the VIS are related to efficient search in ASD, thus providing further evidence of enhanced discrimination in ASD. Autism Res 2020, 13: 550-562. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Children with autism spectrum disorder (ASD) often perform better than their non-ASD peers on visual search tasks; however, it is unclear how they achieve this superior performance. Using magnetic resonance spectroscopy to measure neurochemicals in the brain, we found that the level of one, gamma-aminobutyric acid, in the visual cortex was directly related to search abilities in children with ASD. These results suggest that faster search may relate to enhanced perceptual functioning in children with ASD.Item Reversibility of Neuroimaging Markers Influenced by Lifetime Occupational Manganese Exposure(Oxford Academic, 2019-11) Edmondson, David A.; Ma, Ruoyun E.; Yeh, Chien-Lin; Ward, Eric; Snyder, Sandy; Azizi, Elham; Zauber, S Elizabeth; Wells, Ellen M.; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineManganese (Mn) is a neurotoxicant that many workers are exposed to daily. There is limited knowledge about how changes in exposure levels impact measures in magnetic resonance imaging (MRI). We hypothesized that changes in Mn exposure would be reflected by changes in the MRI relaxation rate R1 and thalamic γ-aminobutyric acid (GABAThal). As part of a prospective cohort study, 17 welders were recruited and imaged on 2 separate occasions approximately 2 years apart. MRI relaxometry was used to assess changes of Mn accumulation in the brain. Additionally, GABA was measured using magnetic resonance spectroscopy in the thalamic and striatal regions of the brain. Air Mn exposure ([Mn]Air) and cumulative exposure indexes of Mn (Mn-CEI) for the past 3 months (Mn-CEI3M), past year (Mn-CEI12M), and lifetime (Mn-CEILife) were calculated using personal air sampling and a comprehensive work history, whereas toenails were collected for analysis of internal Mn body burden. Finally, welders’ motor function was examined using the Unified Parkinson’s Disease Rating Scale (UPDRS). Median exposure decreased for all exposure measures between the first and second scan. ΔGABAThal was significantly correlated with ΔMn-CEI3M (ρ = 0.66, adjusted p = .02), ΔMn-CEI12M (ρ = 0.70, adjusted p = .006), and Δ[Mn]Air (ρ = 0.77, adjusted p = .002). ΔGABAThal significantly decreased linearly with ΔMn-CEI3M (quantile regression, β = 15.22, p = .02) as well as Δ[Mn]Air (β = 1.27, p = .04). Finally, Mn-CEILife interacted with Δ[Mn]Air in the substantia nigra where higher Mn-CEILife lessened the ΔR1 per Δ[Mn]Air (F-test, p = .005). Although R1 and GABA changed with Mn exposure, UPDRS was unaffected. In conclusion, our study shows that effects from changes in Mn exposure are reflected in thalamic GABA levels and brain Mn levels, as measured by R1, in most brain regions.Item Toenail Manganese: A Sensitive and Specific Biomarker of Exposure to Manganese in Career Welders(Oxford University Press, 2017-12-15) Ward, Eric J.; Edmondson, David A.; Nour, Mahmoud M.; Snyder, Sandy; Rosenthal, Frank S.; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineManganese (Mn) is an essential trace metal. It is also a component of welding fume. Chronic inhalation of manganese from welding fume has been associated with decreased neurological function. Currently, there is not a universally recognized biomarker for Mn exposure; however, hair and toenails have shown promise. In a cohort of 45 male welders and 35 age-matched factory control subjects, we assessed the sensitivity and specificity of toenail Mn to distinguish occupationally exposed subjects from unexposed controls. Further we examined the exposure time window that best correlates with the proposed biomarker, and investigated if non-occupational exposure factors impacted toenail Mn concentrations. Toenail clippings were analyzed for Mn using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Exposure to respirable Mn-containing particles (<4 µm) was estimated using an exposure model that combines personal air monitoring, work history information, and dietary intake to estimate an individual's exposure to Mn from inhalation of welding fume. We assessed the group differences in toenail concentrations using a Student's t-test between welders and control subjects and performed a receiver operating characteristic (ROC) curve analysis to identify a threshold in toenail concentration that has the highest sensitivity and specificity in distinguishing welders from control subjects. Additionally, we performed mixed-model regressions to investigate the association between different exposure windows and toenail Mn concentrations. We observed that toenail Mn concentrations were significantly elevated among welders compared to control subjects (6.87 ± 2.56 versus 2.70 ± 1.70 µg g-1; P < 0.001). Our results show that using a toenail Mn concentration of 4.14 µg g-1 as cutoff allows for discriminating between controls and welders with 91% specificity and 94% sensitivity [area under curve (AUC) = 0.98]. Additionally, we found that a threshold of 4.66 µg g-1 toenail Mn concentration enables a 90% sensitive and 90% specific discrimination (AUC = 0.96) between subjects with average exposure above or below the American Conference of Governmental Industrial Hygienist (ACGIH) Threshold Limit Value (TLV) of 0.02 mg m-3 during the exposure window of 7-12 months prior to the nail being clipped. Investigating which exposure window was best reflected by toenail Mn reproduced the result from another study of toenail Mn being significantly (P < 0.001) associated with exposure 7-12 months prior to the nail being clipped. Lastly, we found that dietary intake, body mass index, age, smoking status, and ethnicity had no significant effect on toenail Mn concentrations. Our results suggest that toenail Mn is a sensitive, specific, and easy-to-acquire biomarker of Mn exposure, which is feasible to be used in an industrial welder population.Item Whole-brain R1 predicts manganese exposure and biological effects in welders(SpringerLink, 2020-10) Edmondson, David A.; Yeh, Chien-Lin; Hélie, Sébastien; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineManganese (Mn) is a neurotoxicant that, due to its paramagnetic property, also functions as a magnetic resonance imaging (MRI) T1 contrast agent. Previous studies in Mn toxicity have shown that Mn accumulates in the brain, which may lead to parkinsonian symptoms. In this article, we trained support vector machines (SVM) using whole-brain R1 (R1 = 1/T1) maps from 57 welders and 32 controls to classify subjects based on their air Mn concentration ([Mn]Air), Mn brain accumulation (ExMnBrain), gross motor dysfunction (UPDRS), thalamic GABA concentration (GABAThal), and total years welding. R1 was highly predictive of [Mn]Air above a threshold of 0.20 mg/m3 with an accuracy of 88.8% and recall of 88.9%. R1 was also predictive of subjects with GABAThal having less than or equal to 2.6 mM with an accuracy of 82% and recall of 78.9%. Finally, we used an SVM to predict age as a method of verifying that the results could be attributed to Mn exposure. We found that R1 was predictive of age below 48 years of age with accuracies ranging between 75 and 82% with recall between 94.7% and 76.9% but was not predictive above 48 years of age. Together, this suggests that lower levels of exposure (< 0.20 mg/m3 and < 18 years of welding on the job) do not produce discernable signatures, whereas higher air exposures and subjects with more total years welding produce signatures in the brain that are readily identifiable using SVM.