- Browse by Author
Browsing by Author "Earth and Environmental Sciences, School of Science"
Now showing 1 - 10 of 83
Results Per Page
Sort Options
Item A global synthesis of transpiration rate and evapotranspiration partitioning in the shrub ecosystems(Elsevier, 2022-03) Gao, Guangyao; Wang, Di; Zha, Tianshan; Wang, Lixin; Fu, Bojie; Earth and Environmental Sciences, School of ScienceTranspiration (T) is a fundamental process in understanding the ecophysiology of plants, and it is the dominant component of evapotranspiration (ET) in the terrestrial water cycle. Although previous studies have examined T characteristics of shrub ecosystems in some regions, global-scale synthesis that integrates the spatial variations of T, ET and ratio of T to ET (T/ET) and the associated influences of bio-/abiotic factors in the shrub ecosystems is currently lacking. In this study, we synthesized and analyzed T rate, ET rate and T/ET of the shrub ecosystems from the peer-reviewed articles using field observations around the world. These studies were mainly distributed in drylands with aridity index (ratio of precipitation to potential ET) < 0.65, which accounted for 86.4% of the study locations. Globally, the mean daily T and ET rates of shrubs were 1.5 ± 1.0 mm d−1 and 2.4 ± 0.8 mm d−1, with coefficient of variation of 63.2% and 36.2% among the study locations, respectively. Mean T/ET of the shrubs over the growing season was 0.54 ± 0.14, which was generally lower compared with forest, grassland and cropland ecosystems. The T rate of shrubs was positively related to shrub age, shrub height, leaf area index, and vegetation coverage (p < 0.05), and the effects of biotic factors on T rate were stronger compared with abiotic factors. The ET rate of shrubs was positively related to aridity index, long-term annual mean precipitation, mean soil water content, as well as shrub height and vegetation coverage (p < 0.05). By contrast, the effects of biotic factors on variations of shrub T/ET were weaker than those of abiotic factors, and the T/ET of shrubs was negatively related to aridity index, long-term annual mean precipitation and mean soil water content, but positively related to latitude (p < 0.05). This study is an important supplement of our knowledge gap in terrestrial water cycle, and the findings suggest that T accounted for about half of the water into atmosphere from shrub ecosystems, and the variations of T rate of shrubs were mainly controlled by biotic factors, whereas ET rate and T/ET was mainly affected by abiotic factors.Item A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018(Copernicus, 2022-01-13) Tao, Hui; Song, Kaishan; Liu, Ge; Wang, Qiang; Wen, Zhidan; Jacinthe, Pierre-Andre; Xu, Xiaofeng; Du, Jia; Shang, Yingxin; Li, Sijia; Wang, Zongming; Lyu, Lili; Hou, Junbin; Wang, Xiang; Liu, Dong; Shi, Kun; Zhang, Baohua; Duan, Hongtao; Earth and Environmental Sciences, School of ScienceWater clarity serves as a sensitive tool for understanding the spatial pattern and historical trend in lakes' trophic status. Despite the wide availability of remotely sensed data, this metric has not been fully explored for long-term environmental monitoring. To this end, we utilized Landsat top-of-atmosphere reflectance products within Google Earth Engine in the period 1984–2018 to retrieve the average Secchi disk depth (SDD) for each lake in each year. Three SDD datasets were used for model calibration and validation from different field campaigns mainly conducted during 2004–2018. The red blue band ratio algorithm was applied to map SDD for lakes (>0.01 km2) based on the first SDD dataset, where R2=0.79 and relative RMSE (rRMSE) =61.9 %. The other two datasets were used to validate the temporal transferability of the SDD estimation model, which confirmed the stable performance of the model. The spatiotemporal dynamics of SDD were analyzed at the five lake regions and individual lake scales, and the average, changing trend, lake number and area, and spatial distribution of lake SDDs across China were presented. In 2018, we found the number of lakes with SDD <2 m accounted for the largest proportion (80.93 %) of the total lakes, but the total areas of lakes with SDD of <0.5 and >4 m were the largest, both accounting for about 24.00 % of the total lakes. During 1984–2018, lakes in the Tibetan–Qinghai Plateau region (TQR) had the clearest water with an average value of 3.32±0.38 m, while that in the northeastern region (NLR) exhibited the lowest SDD (mean 0.60±0.09 m). Among the 10 814 lakes with SDD results for more than 10 years, 55.42 % and 3.49 % of lakes experienced significant increasing and decreasing trends, respectively. At the five lake regions, except for the Inner Mongolia–Xinjiang region (MXR), more than half of the total lakes in every other region exhibited significant increasing trends. In the eastern region (ELR), NLR and Yungui Plateau region (YGR), almost more than 50 % of the lakes that displayed increase or decrease in SDD were mainly distributed in the area range of 0.01–1 km2, whereas those in the TQR and MXR were primarily concentrated in large lakes (>10 km2). Spatially, lakes located in the plateau regions generally exhibited higher SDD than those situated in the flat plain regions. The dataset is freely available at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Hydro.tpdc.271571, Tao et al., 2021).Item A new, lower threshold for lead poisoning in children means more kids will get tested – but the ultimate solution is eliminating lead sources(The Conversation US, Inc., 2021-11-05) Filippelli, Gabriel; Earth and Environmental Sciences, School of ScienceItem Appearance of an enigmatic Pb source in South America around 2000 BP: Anthropogenic vs natural origin(Elsevier, 2020-05) Kamenov, George D.; Escobar, Jaime; Arnold, T. Elliott; Pardo-Trujillo, Andrés; Gangoiti, Gotzon; Hoyos, Natalia; Curtis, Jason H.; Bird, Broxton W.; Velez, Maria Isabel; Vallejo, Felipe; Trejos-Tamayo, Raul; Earth and Environmental Sciences, School of ScienceNeotropical wetlands in the paramo (a unique alpine-tundra ecosystem) region of South America have the potential to be natural archives for metal pollution by modern and past populations. An organic-rich sediment core from the El Triunfo mire, located in the paramo region, provides a record of natural and anthropogenic metal sources in the Northern Andes during the last four millennia. The Triunfo record is complex, as the mire is located in the Northern Volcanic Zone (NVZ) and receives direct input of volcanic material. Regardless of the volcanic input, calculated metal enrichment factors normalized to Sc show metal enrichment in the Northern Andes around 2000 years ago and again in recent industrial times. A number of samples show a shift to lower Pb isotope ratios indicating the appearance of a new, enigmatic Pb source around 2000 years ago. The topmost layer of the core shows the lowest Pb isotope ratios, reflecting input of modern anthropogenic Pb. In contrast to Pb, Nd isotopes do not show significant variations along the entire core, indicating mostly volcanic material input to the mire. The decoupling between Nd and Pb isotopes indicates that the enigmatic Pb source must be anthropogenic in origin. Based on the dominant atmospheric currents in the region, the El Triunfo mire can receive input from long-distance and local sources. Dispersion simulations validate the possibility of pollutant particle transport from Europe to the northern hemisphere Neotropics. As the first metal enrichment coincides with the Roman Empire times, the El Triunfo Pb isotopes are compared to contemporary peat records from Europe. All records show similar decrease in the Pb isotope ratios due to anthropogenic Pb input. Small Pb isotope differences between a record from Spain and El Triunfo indicate that the enigmatic Pb that appeared around 2000 years ago in the mire is unlikely to have originated from long-distance Roman Empire pollution. Instead, a group of deposits, namely San Lucas, San Martin de Loba, and El Bagre, located in north-central Colombia, show low Pb isotope ratios that can potentially explain the observed Pb signal in the El Triunfo sediments. The deposits are located up wind, along the predominant atmospheric currents in the region. Therefore, it is plausible that mining activities in the area of San-Lucas, San-Martin, and/or El Bagre released Pb in the atmosphere that was transported and deposited in the El Triunfo mire. These deposits are not associated with the known regions of influence of any of the early pre-Hispanic cultures in Colombia and there is no evidence for mining in this region around 2000 years ago. However, given that all other possibilities are unlikely, the appearance of lower Pb isotope ratios in the mire suggests the onset of mining in the region at least 400 years earlier than the available archaeological evidence at present. The El Triunfo mire record can be used as indirect evidence for significant metal exploitation by early pre-Hispanic cultures in the northern Andes as early as 2000 years ago.Item Application of Scenario Earthquakes for Analysis of Seismically Triggered Landslide Hazard: A Case Study in Costa Rica(Central American School of Geology, University of Costa Rica, 2022-07-11) Seal , Dylan M.; Nowicki Jessee, M. Anna; Hamburger, Michael W.; Ruiz , Paulo; Earth and Environmental Sciences, School of ScienceIn this study, we demonstrate the capabilities of hypothetical scenario earthquakes as a new tool for assessment of hazards associated with earthquake-triggered landslides. Costa Rica offers an ideal environment for demonstrating the utility of scenario earthquakes due to its diverse tectonic environments and associated widespread seismic hazard, rugged topography, and high landslide susceptibility. We investigate the relative influence of landslide proxies such as topographic slope, peak ground velocity (PGV), and compound topographic index (CTI), and earthquake source parameters such as magnitude and depth, on predicted landslide probability and fatality. We examine five distinct tectonic environments, including subduction events beneath the (1) Nicoya and (2) Osa peninsulas respectively, (3) intraplate earthquakes beneath the Central Volcanic Range (CVR) and (4) the Central Costa Rica Deformed Belt (CCRDB), and (5) back-arc thrust events on the eastern Caribbean coast. Our results demonstrate that the slope, PGV, and CTI thresholds necessary to produce landslide probabilities greater than 10% vary by tectonic environment. In all cases, we observe magnitude to be the primary control on the predicted maximum landslide probability and overall areal landslide coverage. We validate model predictions with observed landslide inventories from the 2009 Cinchona and 1991 Limon earthquakes, demonstrating a good fit, where over 70% of landslides occurring in zones of greater than 20% probability. We also use a global model of landslide impact to predict exposure and fatality ranges for each scenario earthquake of this study, revealing that moderate-sized earthquakes in the CCRDB and CVR and large subduction megathrust earthquakes each pose a significant hazard to Costa Rica’s population.Item Assessing Unequal Airborne Exposure to Lead Associated With Race in the USA(Wiley, 2023-07-24) Laidlaw, Mark A. S.; Mielke, Howard W.; Filippelli, Gabriel M.; Earth and Environmental Sciences, School of ScienceRecent research applied the United States Environmental Protection Agency's Chemical Speciation Network and Interagency Monitoring of Protected Visual Environments monitoring stations and observed that mean concentrations of atmospheric lead (Pb) in highly segregated counties are a factor of 5 higher than in well‐integrated counties and argument is made that regulation of existing airborne Pb emissions will reduce children's Pb exposure. We argue that one of the main sources of children's current Pb exposure is from resuspension of legacy Pb in soil dust and that the racial disparity of Pb exposure is associated with Pb‐contaminated community soils.Item Assessing variability of optimum air temperature for photosynthesis across site-years, sites and biomes and their effects on photosynthesis estimation(Elsevier, 2021) Chang, Qing; Xiao, Xiangming; Doughty, Russell; Wu, Xiaocui; Jiao, Wenzhe; Qin, Yuanwei; Earth and Environmental Sciences, School of ScienceGross primary productivity (GPP) of vegetation is affected by air temperature. Biogeochemical models use the optimum air temperature (Topt) parameter, which comes from biome-specific look-up tables (Topt−b−LT). Many studies have shown that plants have the capacity to adapt to changes in environmental conditions over time, which suggests that the static Topt−b−LT parameters in the biogeochemical models may poorly represent actual Topt and induce uncertainty in GPP estimates. Here, we estimated biome-specific, site-year-specific, and site-specific optimum air temperature using GPP data from eddy covariance (EC) flux tower sites (GPPEC) (Topt−b−EC, Topt−sy−EC, Topt−s−EC), the Enhanced Vegetation Index (EVI) from MODIS images (Topt−b−EVI, Topt−sy−EVI, Topt−s−EVI), and mean daytime air temperature (TDT). We evaluated the consistency among the four Topt parameters (Topt−b, Topt−sy, Topt−s and Topt−b−LT), and assessed how they affect satellite-based GPP estimates. We find that Topt parameters from MODIS EVI agree well with those from GPPEC, which indicates that EVI can be used as a variable to estimate Topt at individual pixels over large spatial domains. Topt−b, Topt−sy, and Topt−s differed significantly from Topt−b−LT. GPP estimates using Topt−b and Topt−sy were more consistent with GPPEC than when using Topt−b−LT for all the land cover types. Our use of Topt−sy substantially improved 8-day and annual GPP estimates across biomess (from 1% to 34%), especially for cropland, grassland, and open shrubland. Our simple calculation shows that global GPP estimates differ by up to 10 Pg C/yr when using our suggested Topt−sy−EVI instead of using the static Topt−b−LT. Our new approach on estimating Topt has the potential to improve estimates of GPP from satellite-based models, which could lead to better understanding of carbon-climate interactions.Item Author Correction: Unraveling iron oxides as abiotic catalysts of organic phosphorus recycling in soil and sediment matrices(Springer Nature, 2024-08-30) Basinski, Jade J.; Bone, Sharon E.; Klein, Annaleise R.; Thongsomboon, Wiriya; Mitchell, Valerie; Shukle, John T.; Druschel, Gregory K.; Thompson, Aaron; Aristilde, Ludmilla; Earth and Environmental Sciences, School of ScienceCorrection to: Nature Communications 10.1038/s41467-024-47931-z, published online 18 July 2024 The original version of this Article contained an error in the Abstract, which was previously incorrectly given as ‘ten-fold’. The correct version states ‘twenty-fold’ in place of ‘ten-fold’. This has been corrected in both the PDF and HTML versions of the Article.Item Biden’s infrastructure plan targets lead pipes that threaten public health across the US(The Conversation US, Inc., 2021-05-04) Filippelli, Gabriel; Earth and Environmental Sciences, School of ScienceItem Bioenergetic characterization of a shallow-sea hydrothermal vent system: Milos Island, Greece(Public Library of Science, 2020-06-05) Lu, Guang-Sin; LaRowe, Douglas E.; Fike, David A.; Druschel, Gregory K.; Gilhooly, William P., III; Price, Roy E.; Amend, Jan P.; Earth and Environmental Sciences, School of ScienceShallow-sea hydrothermal systems, like their deep-sea and terrestrial counterparts, can serve as relatively accessible portals into the microbial ecology of subsurface environments. In this study, we determined the chemical composition of 47 sediment porewater samples along a transect from a diffuse shallow-sea hydrothermal vent to a non-thermal background area in Paleochori Bay, Milos Island, Greece. These geochemical data were combined with thermodynamic calculations to quantify potential sources of energy that may support in situ chemolithotrophy. The Gibbs energies (ΔGr) of 730 redox reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As-bearing compounds were calculated. Of these reactions, 379 were exergonic at one or more sampling locations. The greatest energy yields were from anaerobic CO oxidation with NO2- (-136 to -162 kJ/mol e-), followed by reactions in which the electron acceptor/donor pairs were O2/CO, NO3-/CO, and NO2-/H2S. When expressed as energy densities (where the concentration of the limiting reactant is taken into account), a different set of redox reactions are the most exergonic: in sediments affected by hydrothermal input, sulfide oxidation with a range of electron acceptors or nitrite reduction with different electron donors provide 85~245 J per kg of sediment, whereas in sediments less affected or unaffected by hydrothermal input, various S0 oxidation reactions and aerobic respiration reactions with several different electron donors are most energy-yielding (80~95 J per kg of sediment). A model that considers seawater mixing with hydrothermal fluids revealed that there is up to ~50 times more energy available for microorganisms that can use S0 or H2S as electron donors and NO2- or O2 as electron acceptors compared to other reactions. In addition to revealing likely metabolic pathways in the near-surface and subsurface mixing zones, thermodynamic calculations like these can help guide novel microbial cultivation efforts to isolate new species.