- Browse by Author
Browsing by Author "Dutta, Sayan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bassoon contributes to tau-seed propagation and neurotoxicity(Springer Nature, 2022) Martinez, Pablo; Patel, Henika; You, Yanwen; Jury, Nur; Perkins, Abigail; Lee-Gosselin, Audrey; Taylor, Xavier; You, Yingjian; Di Prisco, Gonzalo Viana; Huang, Xiaoqing; Dutta, Sayan; Wijeratne, Aruna B.; Redding-Ochoa, Javier; Shahid, Syed Salman; Codocedo, Juan F.; Min, Sehong; Landreth, Gary E.; Mosley, Amber L.; Wu, Yu-Chien; McKinzie, David L.; Rochet, Jean-Christophe; Zhang, Jie; Atwood, Brady K.; Troncoso, Juan; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineTau aggregation is a defining histopathological feature of Alzheimer’s disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer’s disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.Item TREM2-Deficient Microglia Attenuate Tau Spreading In Vivo(MDPI, 2023-06-10) Lee-Gosselin, Audrey; Jury-Garfe, Nur; You, Yanwen; Dabin, Luke; Soni, Disha; Dutta, Sayan; Rochet, Jean-Christophe; Kim, Jungsu; Oblak, Adrian L.; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineThe role of TREM2 in Alzheimer's disease (AD) is not fully understood. Previous studies investigating the effect of TREM2 deletion on tauopathy mouse models without the contribution of b-amyloid have focused only on tau overexpression models. Herein, we investigated the effects of TREM2 deficiency on tau spreading using a mouse model in which endogenous tau is seeded to produce AD-like tau features. We found that Trem2-/- mice exhibit attenuated tau pathology in multiple brain regions concomitant with a decreased microglial density. The neuroinflammatory profile in TREM2-deficient mice did not induce an activated inflammatory response to tau pathology. These findings suggest that reduced TREM2 signaling may alter the response of microglia to pathological tau aggregates, impairing their activation and decreasing their capacity to contribute to tau spreading. However, caution should be exercised when targeting TREM2 as a therapeutic entry point for AD until its involvement in tau aggregation and propagation is better understood.