ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dutta, Sayan"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bassoon contributes to tau-seed propagation and neurotoxicity
    (Springer Nature, 2022) Martinez, Pablo; Patel, Henika; You, Yanwen; Jury, Nur; Perkins, Abigail; Lee-Gosselin, Audrey; Taylor, Xavier; You, Yingjian; Di Prisco, Gonzalo Viana; Huang, Xiaoqing; Dutta, Sayan; Wijeratne, Aruna B.; Redding-Ochoa, Javier; Shahid, Syed Salman; Codocedo, Juan F.; Min, Sehong; Landreth, Gary E.; Mosley, Amber L.; Wu, Yu-Chien; McKinzie, David L.; Rochet, Jean-Christophe; Zhang, Jie; Atwood, Brady K.; Troncoso, Juan; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of Medicine
    Tau aggregation is a defining histopathological feature of Alzheimer’s disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer’s disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.
  • Loading...
    Thumbnail Image
    Item
    Interactome Analysis of Tau‐seed Isolated from AD Brains Suggests New Mechanism for Tau Aggregation and Spreading
    (Wiley, 2025-01-03) Martinez, Pablo; You, Yanwen; Patel, Henika; Jury, Nur; Min, Yuhao; Redding, Javier; Huang, Xiaoqing; Dutta, Sayan; Mosley, Amber L.; Rochet, Jean-Christophe; Zhang, Jie; Ertekin-Taner, Nilüfer; Troncoso, Juan C.; Lasagna Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of Medicine
    Background: Tau aggregates, a hallmark of Alzheimer’s disease (AD) and other tauopathies, spread throughout the brain, contributing to neurodegeneration. How this propagation occurs remains elusive. Previous research suggests that tau‐seed interactors play a crucial role. Based on this, the study aimed to identify novel tau‐seed interactors in AD brains and validate their impact in vivo. Method: AD and control brain extracts were separated in fractions by Size Exclusion Chromatography. Fractions with the highest tau seeding activity, measured using a tai‐biosensor cell line, were analyzed by mass spectrometry to identify interacting proteins. Bioinformatic tools dissected enriched pathways, identifying interactors that were validated in a Drosophila tauopathy model by genetically interfering with their homologs and assessing tau accumulation and eye degeneration. Results: Tau seeding activity was concentrated in high molecular weight fractions containing only a small portion of total tau in the AD brains. Compared to controls, AD brains revealed a distinct interactome for tau‐seeds, enriched in proteins associated with synaptic and mitochondrial pathways. Notably, Drosophila screening confirmed that several novel interactors significantly reduced tau accumulation and eye degeneration, suggesting their potential therapeutic relevance. Conclusion: This study sheds light on tau propagation mechanisms in AD by identifying novel tau‐seed interactors. These interactors, particularly those involved in synaptic and mitochondrial pathways, offer promising targets for therapeutic interventions aimed at decreasing tau spread and potentially preventing neurodegeneration in tauopathies. The findings add to the growing evidence that targeting tau‐seed interactors, like previously identified BSN, could represent a novel strategy for treating these debilitating conditions.
  • Loading...
    Thumbnail Image
    Item
    TREM2-Deficient Microglia Attenuate Tau Spreading In Vivo
    (MDPI, 2023-06-10) Lee-Gosselin, Audrey; Jury-Garfe, Nur; You, Yanwen; Dabin, Luke; Soni, Disha; Dutta, Sayan; Rochet, Jean-Christophe; Kim, Jungsu; Oblak, Adrian L.; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of Medicine
    The role of TREM2 in Alzheimer's disease (AD) is not fully understood. Previous studies investigating the effect of TREM2 deletion on tauopathy mouse models without the contribution of b-amyloid have focused only on tau overexpression models. Herein, we investigated the effects of TREM2 deficiency on tau spreading using a mouse model in which endogenous tau is seeded to produce AD-like tau features. We found that Trem2-/- mice exhibit attenuated tau pathology in multiple brain regions concomitant with a decreased microglial density. The neuroinflammatory profile in TREM2-deficient mice did not induce an activated inflammatory response to tau pathology. These findings suggest that reduced TREM2 signaling may alter the response of microglia to pathological tau aggregates, impairing their activation and decreasing their capacity to contribute to tau spreading. However, caution should be exercised when targeting TREM2 as a therapeutic entry point for AD until its involvement in tau aggregation and propagation is better understood.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University