- Browse by Author
Browsing by Author "Durant, Pamela J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment(Elsevier, 2018-06) Zaretsky, Dmitry V.; Kline, Hannah; Zaretskaia, Maria V.; Brown, Mary Beth; Durant, Pamela J.; Alves, Nathan J.; Rusyniak, Daniel E.; Emergency Medicine, School of MedicineStimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.Item Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment(Elsevier, 2018-06-15) Zaretsky, Dmitry V.; Kline, Hannah; Zaretskaia, Maria V.; Brown, Mary Beth; Durant, Pamela J.; Alves, Nathan J.; Rusyniak, Daniel E.; Emergency Medicine, School of MedicineStimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.Item Independent of 5-HT1A receptors, neurons in the paraventricular hypothalamus mediate ACTH responses from MDMA(Elsevier, 2013-10-25) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Durant, Pamela J.; Ross, Christian T.; Rusyniak, Daniel E.; Emergency Medicine, School of MedicineAcute and chronic complications from the substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) are linked to activation of the hypothalamic-pituitary-adrenal (HPA) axis. How MDMA activates the HPA axis is not known. HPA responses to stress are known to be mediated through the paraventricular (PVH) hypothalamus and to involve serotonin-1a (5-HT1A) receptors. We sought to determine if the PVH and 5-HT1A receptors were also involved in mediating HPA responses to MDMA. Rats were pretreated with either saline or a 5-HT1A antagonist, WAY-100635 (WAY), followed by a systemic dose of MDMA (7.5mg/kg i.v.). Animals pretreated with WAY had significantly lower plasma ACTH concentrations after MDMA. To determine if neurons in the PVH were involved, and if their involvement was mediated by 5-HT1A receptors, rats implanted with guide cannulas targeting the PVH were microinjected with the GABAA receptor agonist muscimol, aCSF, or WAY followed by MDMA. Compared to aCSF, microinjections of muscimol significantly attenuated the MDMA-induced rise in plasma ACTH (126 vs. 588pg/ml, P=<0.01). WAY had no effect. Our data demonstrates that neurons in the PVH, independent of 5-HT1A receptors, mediate ACTH responses to MDMA.Item Inhibition of the dorsomedial hypothalamus, but not the medullary raphe pallidus, decreases hyperthermia and mortality from MDMA given in a warm environment.(Wiley, 2014-04) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; Durant, Pamela J.; Rusyniak, Daniel E.; Department of Medicine, IU School of MedicineThe central mechanisms through which MDMA mediates life-threatening hyperthermia when taken in a warm environment are not well described. It is assumed that MDMA alters normal thermoregulatory circuits resulting in increased heat production through interscapular brown adipose tissue (iBAT) and decreased heat dissipation through cutaneous vasoconstriction. We studied the role of the dorsomedial hypothalamus (DMH) and medullary raphe pallidus (mRPa) in mediating iBAT, tail blood flow, and locomotor effects produced by MDMA. Rats were instrumented with guide cannulas targeting either the DMH or the mRPa-brain regions involved in regulating iBAT and cutaneous vascular beds. In all animals, core temperature and locomotion were recorded with surgically implanted telemetric transmitters; and additionally either iBAT temperature (via telemetric transmitter) or tail artery blood flow (via tail artery Doppler cuff) were also recorded. Animals were placed in an environmental chamber at 32°C and microinjected with either control or the GABA agonist muscimol (80pmol) followed by an intravenous injection of saline or MDMA (7.5 mg kg-1). To prevent undue suffering, a core temperature of 41°C was chosen as the surrogate marker of mortality. Inhibition of the DMH, but not the mRPa, prevented mortality and attenuated hyperthermia and locomotion. Inhibition of either the DMH or the mRPa did not affect iBAT temperature increases or tail blood flow decreases. While MDMA increases iBAT thermogenesis and decreases heat dissipation through cutaneous vasoconstriction, thermoregulatory brain regions known to mediate these effects are not involved. Rather, the finding that inhibiting the DMH decreases both locomotion and body temperature suggests that locomotion may be a key central contributor to MDMA-evoked hyperthermia.Item Microarray studies on effects of Pneumocystis carinii infection on global gene expression in alveolar macrophages(BMC, 2010-04-08) Cheng, Bi-Hua; Liu, Yunlong; Xuei, Xiaoling; Liao, Chung-Ping; Lu, Debao; Lasbury, Mark E.; Durant, Pamela J.; Lee, Chao-Hung; Medicine, School of MedicinePneumocystis pneumonia is a common opportunistic disease in AIDS patients. The alveolar macrophage is an important effector cell in the clearance of Pneumocystis organisms by phagocytosis. However, both the number and phagocytic activity of alveolar macrophages are decreased in Pneumocystis infected hosts. To understand how Pneumocystis inactivates alveolar macrophages, Affymetrix GeneChip® RG-U34A DNA microarrays were used to study the difference in global gene expression in alveolar macrophages from uninfected and Pneumocystis carinii-infected Sprague-Dawley rats. Results Analyses of genes that were affected by Pneumocystis infection showed that many functions in the cells were affected. Antigen presentation, cell-mediated immune response, humoral immune response, and inflammatory response were most severely affected, followed by cellular movement, immune cell trafficking, immunological disease, cell-to-cell signaling and interaction, cell death, organ injury and abnormality, cell signaling, infectious disease, small molecular biochemistry, antimicrobial response, and free radical scavenging. Since rats must be immunosuppressed in order to develop Pneumocystis infection, alveolar macrophages from four rats of the same sex and age that were treated with dexamethasone for the entire eight weeks of the study period were also examined. With a filter of false-discovery rate less than 0.1 and fold change greater than 1.5, 200 genes were found to be up-regulated, and 144 genes were down-regulated by dexamethasone treatment. During Pneumocystis pneumonia, 115 genes were found to be up- and 137 were down-regulated with the same filtering criteria. The top ten genes up-regulated by Pneumocystis infection were Cxcl10, Spp1, S100A9, Rsad2, S100A8, Nos2, RT1-Bb, Lcn2, RT1-Db1, and Srgn with fold changes ranging between 12.33 and 5.34; and the top ten down-regulated ones were Lgals1, Psat1, Tbc1d23, Gsta1, Car5b, Xrcc5, Pdlim1, Alcam, Cidea, and Pkib with fold changes ranging between -4.24 and -2.25. Conclusions In order to survive in the host, Pneumocystis organisms change the expression profile of alveolar macrophages. Results of this study revealed that Pneumocystis infection affects many cellular functions leading to reduced number and activity of alveolar macrophages during Pneumocystis pneumonia.Item Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus(Elsevier, 2015-05-22) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; Durant, Pamela J.; Rusyniak, Daniel E.; Department of Emergency Medicine, IU School of MedicineThe contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA.