- Browse by Author
Browsing by Author "Dunne, Margaret M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Effectiveness of 2, 3, and 4 COVID-19 mRNA Vaccine Doses Among Immunocompetent Adults During Periods when SARS-CoV-2 Omicron BA.1 and BA.2/BA.2.12.1 Sublineages Predominated — VISION Network, 10 States, December 2021–June 2022(Center for Disease Control, 2022-07-22) Link-Gelles, Ruth; Levy, Matthew E.; Gaglani, Manjusha; Irving, Stephanie A.; Stockwell, Melissa; Dascomb, Kristin; DeSilva, Malini B.; Reese, Sarah E.; Liao, I-Chia; Ong, Toan C.; Grannis, Shaun J.; McEvoy, Charlene; Patel, Palak; Klein, Nicola P.; Hartmann, Emily; Stenehjem, Edward; Natarajan, Karthik; Naleway, Allison L.; Murthy, Kempapura; Rao, Suchitra; Dixon, Brian E.; Kharbanda, Anupam B.; Akinseye, Akintunde; Dickerson, Monica; Lewis, Ned; Grisel, Nancy; Han, Jungmi; Barron, Michelle A.; Fadel, William F.; Dunne, Margaret M.; Goddard, Kristin; Arndorfer, Julie; Konatham, Deepika; Valvi, Nimish R.; Currey, J. C.; Fireman, Bruce; Raiyani, Chandni; Zerbo, Ousseny; Sloan-Aagard, Chantel; Ball, Sarah W.; Thompson, Mark G.; Tenforde, Mark W.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Omicron variant (B.1.1.529) of SARS-CoV-2, the virus that causes COVID-19, was first identified in the United States in November 2021, with the BA.1 sublineage (including BA.1.1) causing the largest surge in COVID-19 cases to date. Omicron sublineages BA.2 and BA.2.12.1 emerged later and by late April 2022, accounted for most cases.* Estimates of COVID-19 vaccine effectiveness (VE) can be reduced by newly emerging variants or sublineages that evade vaccine-induced immunity (1), protection from previous SARS-CoV-2 infection in unvaccinated persons (2), or increasing time since vaccination (3). Real-world data comparing VE during the periods when the BA.1 and BA.2/BA.2.12.1 predominated (BA.1 period and BA.2/BA.2.12.1 period, respectively) are limited. The VISION network† examined 214,487 emergency department/urgent care (ED/UC) visits and 58,782 hospitalizations with a COVID-19-like illness§ diagnosis among 10 states during December 18, 2021-June 10, 2022, to evaluate VE of 2, 3, and 4 doses of mRNA COVID-19 vaccines (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) compared with no vaccination among adults without immunocompromising conditions. VE against COVID-19-associated hospitalization 7-119 days and ≥120 days after receipt of dose 3 was 92% (95% CI = 91%-93%) and 85% (95% CI = 81%-89%), respectively, during the BA.1 period, compared with 69% (95% CI = 58%-76%) and 52% (95% CI = 44%-59%), respectively, during the BA.2/BA.2.12.1 period. Patterns were similar for ED/UC encounters. Among adults aged ≥50 years, VE against COVID-19-associated hospitalization ≥120 days after receipt of dose 3 was 55% (95% CI = 46%-62%) and ≥7 days (median = 27 days) after a fourth dose was 80% (95% CI = 71%-85%) during BA.2/BA.2.12.1 predominance. Immunocompetent persons should receive recommended COVID-19 booster doses to prevent moderate to severe COVID-19, including a first booster dose for all eligible persons and second booster dose for adults aged ≥50 years at least 4 months after an initial booster dose. Booster doses should be obtained immediately when persons become eligible.Item Effectiveness of 2-Dose Vaccination with mRNA COVID-19 Vaccines Against COVID-19–Associated Hospitalizations Among Immunocompromised Adults — Nine States, January–September 2021(CDC, 2021-11) Embi, Peter J.; Levy, Matthew E.; Naleway, Allison L.; Patel, Palak; Gaglani, Manjusha; Natarajan, Karthik; Dascomb, Kristin; Ong, Toan C.; Klein, Nicola P.; Liao, I-Chia; Grannis, Shaun J.; Han, Jungmi; Stenehjem, Edward; Dunne, Margaret M.; Lewis, Ned; Irving, Stephanie A.; Rao, Suchitra; McEvoy, Charlene; Bozio, Catherine H.; Murthy, Kempapura; Dixon, Brian E.; Grisel, Nancy; Yang, Duck-Hye; Goddard, Kristin; Kharbanda, Anupam B.; Reynolds, Sue; Raiyani, Chandni; Fadel, William F.; Arndorfer, Julie; Rowley, Elizabeth A.; Fireman, Bruce; Ferdinands, Jill; Valvi, Nimish R.; Ball, Sarah W.; Zerbo, Ousseny; Griggs, Eric P.; Mitchell, Patrick K.; Porter, Rachael M.; Kiduko, Salome A.; Blanton, Lenee; Zhuang, Yan; Steffens, Andrea; Reese, Sarah E.; Olson, Natalie; Williams, Jeremiah; Dickerson, Monica; McMorrow, Meredith; Schrag, Stephanie J.; Verani, Jennifer R.; Fry, Alicia M.; Azziz-Baumgartner, Eduardo; Barron, Michelle A.; Thompson, Mark G.; DeSilva, Malini B.; Medicine, School of MedicineWhat is already known about this topic? Studies suggest that immunocompromised persons who receive COVID-19 vaccination might not develop high neutralizing antibody titers or be as protected against severe COVID-19 outcomes as are immunocompetent persons. What is added by this report? Effectiveness of mRNA vaccination against laboratory-confirmed COVID-19–associated hospitalization was lower (77%) among immunocompromised adults than among immunocompetent adults (90%). Vaccine effectiveness varied considerably among immunocompromised patient subgroups. What are the implications for public health practice? Immunocompromised persons benefit from COVID-19 mRNA vaccination but are less protected from severe COVID-19 outcomes than are immunocompetent persons. Immunocompromised persons receiving mRNA COVID-19 vaccines should receive 3 doses and a booster, consistent with CDC recommendations, practice nonpharmaceutical interventions, and, if infected, be monitored closely and considered early for proven therapies that can prevent severe outcomes.Item Effectiveness of a Third Dose of mRNA Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance — VISION Network, 10 States, August 2021–January 2022(U.S. Department of Health & Human Services, 2022-01-28) Thompson, Mark G.; Natarajan, Karthik; Irving, Stephanie A.; Rowley, Elizabeth A.; Griggs, Eric P.; Gaglani, Manjusha; Klein, Nicola P.; Grannis, Shaun J.; DeSilva, Malini B.; Stenehjem, Edward; Reese, Sarah E.; Dickerson, Monica; Naleway, Allison L.; Han, Jungmi; Konatham, Deepika; McEvoy, Charlene; Rao, Suchitra; Dixon, Brian E.; Dascomb, Kristin; Lewis, Ned; Levy, Matthew E.; Patel, Palak; Liao, I-Chia; Kharbanda, Anupam B.; Barron, Michelle A.; Fadel, William F.; Grisel, Nancy; Goddard, Kristin; Yang, Duck-Hye; Wondimu, Mehiret H.; Murthy, Kempapura; Valvi, Nimish R.; Arndorfer, Julie; Fireman, Bruce; Dunne, Margaret M.; Embi, Peter; Azziz-Baumgartner, Eduardo; Zerbo, Ousseny; Bozio, Catherine H.; Reynolds, Sue; Ferdinands, Jill; Williams, Jeremiah; Link-Gelles, Ruth; Schrag, Stephanie J.; Verani, Jennifer R.; Ball, Sarah; Ong, Toan C.; Family Medicine, School of MedicineItem Effectiveness of COVID-19 mRNA Vaccines Against COVID-19–Associated Hospitalizations Among Immunocompromised Adults During SARS-CoV-2 Omicron Predominance — VISION Network, 10 States, December 2021—August 2022(U.S. Department of Health & Human Services, 2022-10-21) Britton, Amadea; Embi, Peter J.; Levy, Matthew E.; Gaglani, Manjusha; DeSilva, Malini B.; Dixon, Brian E.; Dascomb, Kristin; Patel, Palak; Schrader, Kristin E.; Klein, Nicola P.; Ong, Toan C.; Natarajan, Karthik; Hartmann, Emily; Kharbanda, Anupam B.; Irving, Stephanie A.; Dickerson, Monica; Dunne, Margaret M.; Raiyani, Chandni; Grannis, Shaun J.; Stenehjem, Edward; Zerbo, Ousseny; Rao, Suchitra; Han, Jungmi; Sloan-Aagard, Chantel; Griggs, Eric P.; Weber, Zachary A.; Murthy, Kempapura; Fadel, William F.; Grisel, Nancy; McEvoy, Charlene; Lewis, Ned; Barron, Michelle A.; Nanez, Juan; Reese, Sarah E.; Mamawala, Mufaddal; Valvi, Nimish R.; Arndorfer, Julie; Goddard, Kristin; Yang, Duck-Hye; Fireman, Bruce; Ball, Sarah W.; Link-Gelles, Ruth; Naleway, Allison L.; Tenforde, Mark W.; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringItem Effectiveness of COVID-19 vaccines at preventing emergency department or urgent care encounters and hospitalizations among immunocompromised adults: An observational study of real-world data across 10 US states from August-December 2021(Elsevier, 2023) Embi, Peter J.; Levy, Matthew E.; Patel, Palak; DeSilva, Malini B.; Gaglani, Manjusha; Dascomb, Kristin; Dunne, Margaret M.; Klein, Nicola P.; Ong, Toan C.; Grannis, Shaun J.; Natarajan, Karthik; Yang, Duck-Hye; Stenehjem, Edward; Zerbo, Ousseny; McEvoy, Charlene; Rao, Suchitra; Thompson, Mark G.; Konatham, Deepika; Irving, Stephanie A.; Dixon, Brian E.; Han, Jungmi; Schrader, Kristin E.; Grisel, Nancy; Lewis, Ned; Kharbanda, Anupam B.; Barron, Michelle A.; Reynolds, Sue; Liao, I-Chia; Fadel, William F.; Rowley, Elizabeth A.; Arndorfer, Julie; Goddard, Kristin; Murthy, Kempapura; Valvi, Nimish R.; Weber, Zachary A.; Fireman, Bruce; Reese, Sarah E.; Ball, Sarah W.; Naleway, Allison L.; Medicine, School of MedicineBackground: Immunocompromised (IC) persons are at increased risk for severe COVID-19 outcomes and are less protected by 1-2 COVID-19 vaccine doses than are immunocompetent (non-IC) persons. We compared vaccine effectiveness (VE) against medically attended COVID-19 of 2-3 mRNA and 1-2 viral-vector vaccine doses between IC and non-IC adults. Methods: Using a test-negative design among eight VISION Network sites, VE against laboratory-confirmed COVID-19-associated emergency department (ED) or urgent care (UC) events and hospitalizations from 26 August-25 December 2021 was estimated separately among IC and non-IC adults and among specific IC condition subgroups. Vaccination status was defined using number and timing of doses. VE for each status (versus unvaccinated) was adjusted for age, geography, time, prior positive test result, and local SARS-CoV-2 circulation. Results: We analyzed 8,848 ED/UC events and 18,843 hospitalizations among IC patients and 200,071 ED/UC events and 70,882 hospitalizations among non-IC patients. Among IC patients, 3-dose mRNA VE against ED/UC (73% [95% CI: 64-80]) and hospitalization (81% [95% CI: 76-86]) was lower than that among non-IC patients (ED/UC: 94% [95% CI: 93-94]; hospitalization: 96% [95% CI: 95-97]). Similar patterns were observed for viral-vector vaccines. Transplant recipients had lower VE than other IC subgroups. Conclusions: During B.1.617.2 (Delta) variant predominance, IC adults received moderate protection against COVID-19-associated medical events from three mRNA doses, or one viral-vector dose plus a second dose of any product. However, protection was lower in IC versus non-IC patients, especially among transplant recipients, underscoring the need for additional protection among IC adults.Item Effectiveness of Homologous and Heterologous COVID-19 Booster Doses Following 1 Ad.26.COV2.S (Janssen [Johnson & Johnson]) Vaccine Dose Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults - VISION Network, 10 States, December 2021-March 2022(Center for Disease Control, 2022-04-01) Natarajan, Karthik; Prasad, Namrata; Dascomb, Kristin; Irving, Stephanie A.; Yang, Duck-Hye; Gaglani, Manjusha; Klein, Nicola P.; DeSilva, Malini B.; Ong, Toan C.; Grannis, Shaun J.; Stenehjem, Edward; Link-Gelles, Ruth; Rowley, Elizabeth A.; Naleway, Allison L.; Han, Jungmi; Raiyani, Chandni; Vazquez Benitez, Gabriela; Rao, Suchitra; Lewis, Ned; Fadel, William F.; Grisel, Nancy; Griggs, Eric P.; Dunne, Margaret M.; Stockwell, Melissa S.; Mamawala, Mufaddal; McEvoy, Charlene; Barron, Michelle A.; Goddard, Kristin; Valvi, Nimish R.; Arndorfer, Julie; Patel, Palak; Mitchell, Patrick K.; Smith, Michael; Kharbanda, Anupam B.; Fireman, Bruce; Embi, Peter J.; Dickerson, Monica; Davis, Jonathan M.; Zerbo, Ousseny; Dalton, Alexandra F.; Wondimu, Mehiret H.; Azziz-Baumgartner, Eduardo; Bozio, Catherine H.; Reynolds, Sue; Ferdinands, Jill; Williams, Jeremiah; Schrag, Stephanie J.; Verani, Jennifer R.; Ball, Sarah; Thompson, Mark G.; Dixon, Brian E.; Community and Global Health, Richard M. Fairbanks School of Public HealthCDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.