- Browse by Author
Browsing by Author "Dube, Tejesh Charles"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Developing Virtual Reality Module to Improve Student Learning Experience in Additive Manufacturing Curriculum(ASEE, 2020) Zhang, Jing; Singui, Glorio; Hansraj Wadghule, Shambhuraj; Frend, Chauncey Eugene; Dube, Tejesh Charles; Golub, Michael; Mechanical and Energy Engineering, School of Engineering and TechnologyIn our current additive manufacturing (AM) curriculum, the study relies on taking lectures and physical lab experiments. With the advance of virtual reality (VR) technologies in terms of both software and hardware, there is a need to advance the education with adopting advanced VR technologies. In this project, we present our latest results of developing new VR modules in AM curriculum. Specifically, the developed VR modules for fusion deposition modeling and fatigue testing will be presented. In the on-going research, students will be required to use the VR modules in comparison with the physical lab experiments. The focus will be understanding the effectiveness of VR technology on engineering curriculum.Item High Performance Thermal Barrier Coatings on Additively Manufactured Nickel Base Superalloy Substrates(2023-08) Dube, Tejesh Charles; Zhang, Jing; Jones, Alan S.; Koo, Dan Daehyun; Yang, ShengfengThermal barrier coatings (TBCs) made of low-thermal-conductivity ceramic topcoat, metallic bond coat and metallic substrate, have been extensively used in gas turbine engines for thermal protection. Recently, additive manufacturing (AM) or 3D printing techniques have emerged as promising manufacturing techniques to fabricate engine components. The motivation of the thesis is that currently, application of TBCs on AM’ed metallic substrate is still in its infancy, which hinders the realization of its full potential. The goal of this thesis is to understand the processing-structure-property relationship in thermal barrier coating deposited on AM’ed superalloys. The APS method is used to deposit 7YSZ as the topcoat and NiCrAlY as the bond coat on TruForm 718 substrates fabricated using the direct metal laser sintering (DMLS) method. For comparison, another TBC system with the same topcoat and bond coat is deposited using APS on wrought 718 substrates. For thermomechanical property characterizations, thermal cycling, thermal shock (TS) and jet engine thermal shock (JETS) tests are performed for both TBC systems to evaluate thermal durability. Microhardness and elastic modulus at each layer and respective interfaces are also evaluated for both systems. Additionally, the microstructure and elemental composition are thoroughly studied to understand the cause for better performance of one system over the other. Both TBC systems showed similar performance during the thermal cycling and JETS test but TBC systems with AM substrates showed enhanced thermal durability especially in the case of the more aggressive thermal shock test. The TBC sample with AM substrate failed after 105 thermal shock cycles whereas the one with wrought substrate endured a maximum of 85 cycles after which it suffered topcoat delamination. The AM substrates also demonstrated an overall higher microhardness and elastic modulus except for post thermal cycling condition where it slightly underperformed. This study successfully demonstrated the use of AM built substrates for an improved TBC system and validated the enhanced thermal durability and mechanical properties of such a system. A modified YSZ TBC architecture with an intermediate Ti3C2 MXene layer is proposed to improve the interfacial adhesion at the topcoat/bond coat interface to improve the thermal durability of YSZ TBC systems. First principles calculations are conducted to study the interfacial adhesion energy in the modified and conventional YSZ TBC systems. The results show enhanced adhesion at the bond coat/MXene interface. At the topcoat/MXene interface, the adhesion energy is similar to the adhesion energy between the topcoat and bond coat in a conventional YSZ TBC system. An alternative route is proposed for the fabrication of YSZ TBC on nickel base superalloy substrates by using the SPS technology. SPS offers a one-step fabrication process with faster production time and reduced production cost since all the layers of the TBC system are fabricated simultaneously. Two different TBC systems are processed using the same heating protocol. The first system is a conventional TBC system with 8YSZ topcoat, NiCoCrAlY bond coat and nickel base superalloy substrate. The second system is similar to the first but with an addition of Ti3C2 MXene layer between the topcoat and the bond coat. Based on the first principles study, addition of Ti3C2 layer enhances the adhesion strength of the topcoat/bond coat interface, an area which is highly susceptible to spallation. Further tests such as thermal cycling and thermal shock along with the evaluation of mechanical properties would be carried out for these samples in future studies to support our hypothesis.