- Browse by Author
Browsing by Author "Du, Xiaolong"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Functional and Histological Gender Comparison of Age-Matched Rats after Moderate Thoracic Contusive Spinal Cord Injury(Mary Ann Liebert, 2019-05-28) Walker, Chandler L.; Fry, Colin M.E.; Wang, Junmei; Du, Xiaolong; Zuzzio, Kirstin; Liu, Nai-Kui; Walker, Melissa J.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineSpinal cord injury (SCI) afflicts hundreds of thousands of Americans, and most SCI (∼80%) occurs in males. In experimental animal models, however, many studies used females. Funding agencies like the National Institutes of Health recommend that new proposed studies should include both genders due to variations in gender response to injuries, diseases, and treatments. However, cost and considerations for some animal models, such as SCI, affect investigators in adapting to this recommendation. Research has increased comparing gender effects in various disease and injury models, including SCI. However, most studies use weight-matched animals, which poses issues in comparing results and outcomes. The present study compared histologic and functional outcomes between age-matched male and female Sprague-Dawley rats in a moderate thoracic contusion SCI model. Cresyl violet and eosin staining showed no significant differences in lesion volume between genders after 9 weeks post-SCI (p > 0.05). Luxol fast blue–stained spared myelin was similar between genders, although slightly greater (∼6%) in spared myelin, compared with cord volume (p = 0.044). Glial reactivity and macrophage labeling in the lesion area was comparable between genders, as well. Basso, Beattie, Bresnahan (BBB) functional scores were not significantly different between genders, and Hargreaves thermal hyperalgesia and Gridwalk sensorimotor analyses also were similar between genders, compared with uninjured gender controls. Analysis of covariance showed weight did not influence functional recovery as assessed through BBB (p = 0.65) or Gridwalk assessment (p = 0.63) in this study. In conclusion, our findings suggest age-matched male and female rats recover similarly in a common clinically relevant SCI model.Item NG2 Glia Reprogramming Induces Robust Axonal Regeneration After Spinal Cord Injury(bioRxiv, 2023-06-15) Tai, Wenjiao; Du, Xiaolong; Chen, Chen; Xu, Xiao-Ming; Zhang, Chun-Li; Wu, Wei; Neurological Surgery, School of MedicineSpinal cord injury (SCI) often leads to neuronal loss, axonal degeneration and behavioral dysfunction. We recently show that in vivo reprogramming of NG2 glia produces new neurons, reduces glial scaring, and ultimately leads to improved function after SCI. By examining endogenous neurons, we here unexpectedly uncover that NG2 glia reprogramming also induces robust axonal regeneration of the corticospinal tract and serotonergic neurons. Such reprogramming-induced axonal regeneration may contribute to the reconstruction of neural networks essential for behavioral recovery.Item NG2 glia reprogramming induces robust axonal regeneration after spinal cord injury(Elsevier, 2024-01-12) Tai, Wenjiao; Du, Xiaolong; Chen, Chen; Xu, Xiao-Ming; Zhang, Chun-Li; Wu, Wei; Neurological Surgery, School of MedicineSpinal cord injury (SCI) often leads to neuronal loss, axonal degeneration, and behavioral dysfunction. We recently show that in vivo reprogramming of NG2 glia produces new neurons, reduces glial scaring, and ultimately leads to improved function after SCI. By examining endogenous neurons, we here unexpectedly uncover that NG2 glia reprogramming also induces robust axonal regeneration of the corticospinal tract and serotonergic neurons. Such reprogramming-induced axonal regeneration may contribute to the reconstruction of neural networks essential for behavioral recovery.Item Regeneration of Propriospinal Axons in Rat Transected Spinal Cord Injury through a Growth-Promoting Pathway Constructed by Schwann Cells Overexpressing GDNF(MDPI, 2024-07-08) Du, Xiaolong; Zhang, Shengqi; Khabbaz, Aytak; Cohen, Kristen Lynn; Zhang, Yihong; Chakraborty, Samhita; Smith, George M.; Wang, Hongxing; Yadav, Amol P.; Liu, Naikui; Deng, Lingxiao; Neurological Surgery, School of MedicineUnsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons’ regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft–host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.