ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Drzezga, Alexander"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Diagnostic Value of Subjective Memory Complaints Assessed with a Single Item in Dominantly Inherited Alzheimer’s Disease: Results of the DIAN Study
    (Hindawi, 2015) Laske, Christoph; Sohrabi, Hamid R.; Jasielec, Mateusz S.; Müller, Stephan; Koehler, Niklas K.; Gräber, Susanne; Förster, Stefan; Drzezga, Alexander; Mueller-Sarnowski, Felix; Danek, Adrian; Jucker, Mathias; Bateman, Randall J.; Buckles, Virginia; Saykin, Andrew J.; Martins, Ralph N.; Morris, John C.; Indiana Alzheimer Disease Center, Indiana University School of Medicine
    Objective. We examined the diagnostic value of subjective memory complaints (SMCs) assessed with a single item in a large cross-sectional cohort consisting of families with autosomal dominant Alzheimer’s disease (ADAD) participating in the Dominantly Inherited Alzheimer Network (DIAN). Methods. The baseline sample of 183 mutation carriers (MCs) and 117 noncarriers (NCs) was divided according to Clinical Dementia Rating (CDR) scale into preclinical (CDR 0; MCs: ; NCs: ), early symptomatic (CDR 0.5; MCs: ; NCs: ), and dementia stage (CDR ≥ 1; MCs: ; NCs: ). These groups were subdivided by the presence or absence of SMCs. Results. At CDR 0, SMCs were present in 12.1% of MCs and 9.2% of NCs . At CDR 0.5, SMCs were present in 66.7% of MCs and 62.5% of NCs . At CDR ≥ 1, SMCs were present in 96.4% of MCs. SMCs in MCs were significantly associated with CDR, logical memory scores, Geriatric Depression Scale, education, and estimated years to onset. Conclusions. The present study shows that SMCs assessed by a single-item scale have no diagnostic value to identify preclinical ADAD in asymptomatic individuals. These results demonstrate the need of further improvement of SMC measures that should be examined in large clinical trials.
  • Loading...
    Thumbnail Image
    Item
    The prevalence of tau‐PET positivity in aging and dementia
    (Wiley, 2025-01-09) Coomans, Emma M.; Groot, Colin; Rowe, Christopher C.; Dore, Vincent; Villemagne, Victor L.; van de Giessen, Elsmarieke; van der Flier, Wiesje M.; Pijnenburg, Yolande A. L.; Visser, Pieter Jelle; den Braber, Anouk; Pontecorvo, Michael; Shcherbinin, Sergey; Kennedy, Ian A.; Jagust, William J.; Baker, Suzanne L.; Harrison, Theresa M.; Gispert, Juan Domingo; Shekari, Mahnaz; Minguillon, Carolina; Smith, Ruben; Mattsson-Carlgren, Niklas; Palmqvist, Sebastian; Strandberg, Olof; Stomrud, Erik; Malpetti, Maura; O'Brien, John T.; Rowe, James B.; Jäger, Elena; Bischof, Gérard N.; Drzezga, Alexander; Garibotto, Valentina; Frisoni, Giovanni; Peretti, Débora Elisa; Schöll, Michael; Skoog, Ingmar; Kern, Silke; Sperling, Reisa A.; Johnson, Keith A.; Risacher, Shannon L.; Saykin, Andrew J.; Carrillo, Maria C.; Dickerson, Brad C.; Apostolova, Liana G.; Barthel, Henryk; Rullmann, Michael; Messerschmidt, Konstantin; Vandenberghe, Rik; Van Laere, Koen; Spruyt, Laure; Franzmeier, Nicolai; Brendel, Matthias; Gnörich, Johannes; Benzinger, Tammie L. S.; Lagarde, Julien; Sarazin, Marie; Bottlaender, Michel; Villeneuve, Sylvia; Poirier, Judes; Seo, Sang Won; Gu, Yuna; Kim, Jun Pyo; Mormino, Elizabeth; Young, Christina B.; Vossler, Hillary; Rosa-Neto, Pedro; Therriault, Joseph; Rahmouni, Nesrine; Coath, William; Cash, David M.; Schott, Jonathan M.; Rabinovici, Gil D.; La Joie, Renaud; Rosen, Howard J.; Johnson, Sterling C.; Christian, Bradley T.; Betthauser, Tobey J.; Hansson, Oskar; Ossenkoppele, Rik; Radiology and Imaging Sciences, School of Medicine
    Background Tau‐PET imaging allows in‐vivo detection of neurofibrillary tangles. One tau‐PET tracer (i.e., [18F]flortaucipir) has received FDA‐approval for clinical use, and multiple other tau‐PET tracers have been implemented into clinical trials for participant selection and/or as a primary or secondary outcome measure. To optimize future use of tau‐PET, it is essential to understand how demographic, clinical and genetic factors affect tau‐PET‐positivity rates. Method This large‐scale multi‐center study includes 9713 participants from 35 cohorts worldwide who underwent tau‐PET with [18F]flortaucipir (n = 6420), [18F]RO948 (n = 1999), [18F]MK6240 (n = 878) or [18F]PI2620 (n = 416) (Table‐1). We analyzed individual‐level tau‐PET SUVR data using a cerebellar reference region that were processed either centrally (n = 3855) or by each cohort (n = 5858). We computed cohort‐specific SUVR thresholds based on the mean + 2 standard deviations in a temporal meta‐region of amyloid‐negative cognitively normal (CN) individuals aged >50. Logistic generalized estimating equations were used to estimate tau‐PET‐positivity probabilities, using an exchangeable correlation structure to account for within‐cohort correlations. Analyses were performed with (interactions between) age, amyloid‐status, and APOE‐e4 carriership as independent variables, stratified for syndrome diagnosis. Result The study included 5962 CN participants (7.5% tau‐PET‐positive), 1683 participants with mild cognitive impairment (MCI, 33.8% tau‐PET‐positive) and 2068 participants with a clinical diagnosis of dementia (62.1% tau‐PET‐positive) (Figure‐1). From age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity increased from 1.2% [95% CI: 0.9%‐1.5%] to 3.7% [2.3%‐5.1%] among CN amyloid‐negative participants; and from 16.4% [10.8%‐22.1%] to 20.5% [18.8%‐22.2%] among CN amyloid‐positive participants. Among amyloid‐negative participants with MCI and dementia, from age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity increased from 3.5% [1.6%‐5.3%] to 11.8% [7.1%‐16.5%] and from 12.6% [4.5%‐20.7%] to 15.9% [6.7%‐25.1%] respectively. In contrast, among amyloid‐positive participants with MCI and dementia, from age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity decreased from 66.5% [57.0%‐76.0%] to 48.3% [42.9%‐53.8%] and from 92.3% [88.7%‐95.9%] to 73.4% [67.5%‐79.3%] respectively. APOE‐e4 status primarily modulated the association of age with tau‐PET‐positivity estimates among CN and MCI amyloid‐positive participants (Figure‐2). Conclusion This large‐scale multi‐cohort study provides robust prevalence estimates of tau‐PET‐positivity, which can aid the interpretation of tau‐PET in the clinic and inform clinical trial designs.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University