ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Drummond-Borg, Margaret"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Biallelic CRELD1 variants cause a multisystem syndrome, including neurodevelopmental phenotypes, cardiac dysrhythmias, and frequent infections
    (Elsevier, 2024) Jeffries, Lauren; Mis, Emily K.; McWalter, Kirsty; Donkervoort, Sandra; Brodsky, Nina N.; Carpier, Jean-Marie; Ji, Weizhen; Ionita, Cristian; Roy, Bhaskar; Morrow, Jon S.; Darbinyan, Armine; Iyer, Krishna; Aul, Ritu B.; Banka, Siddharth; Chao, Katherine R.; Cobbold, Laura; Cohen, Stacey; Custodio, Helena M.; Drummond-Borg, Margaret; Elmslie, Frances; Finanger, Erika; Hainline, Bryan E.; Helbig, Ingo; Hewson, Stacy; Hu, Ying; Jackson, Adam; Josifova, Dragana; Konstantino, Monica; Leach, Meganne E.; Mak, Bryan; McCormick, David; McGee, Elisabeth; Nelson, Stanley; Nguyen, Joanne; Nugent, Kimberly; Ortega, Lucy; Goodkin, Howard P.; Roeder, Elizabeth; Roy, Sani; Sapp, Katie; Saade, Dimah; Sisodiya, Sanjay M.; Stals, Karen; Towner, Shelley; Wilson, William; Deciphering Developmental Disorders; Genomics England Research Consortium; Undiagnosed Disease Network; Khokha, Mustafa K.; Bönnemann, Carsten G.; Lucas, Carrie L.; Lakhani, Saquib A.; Medical and Molecular Genetics, School of Medicine
    Purpose: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. Methods: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. Results: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. Conclusion: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.
  • Loading...
    Thumbnail Image
    Item
    Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders
    (BMC, 2021-04-19) Gillentine, Madelyn A.; Wang, Tianyun; Hoekzema, Kendra; Rosenfeld, Jill; Liu, Pengfei; Guo, Hui; Kim, Chang N.; De Vries, Bert B.A.; Vissers, Lisenka E.L.M.; Nordenskjold, Magnus; Kvarnung, Malin; Lindstrand, Anna; Nordgren, Ann; Gecz, Jozef; Iascone, Maria; Cereda, Anna; Scatigno, Agnese; Maitz, Silvia; Zanni, Ginevra; Bertini, Enrico; Zweier, Christiane; Schuhmann, Sarah; Wiesener, Antje; Pepper, Micah; Panjwani, Heena; Torti, Erin; Abid, Farida; Anselm, Irina; Srivastava, Siddharth; Atwal, Paldeep; Bacino, Carlos A.; Bhat, Gifty; Cobian, Katherine; Bird, Lynne M.; Friedman, Jennifer; Wright, Meredith S.; Callewaert, Bert; Petit, Florence; Mathieu, Sophie; Afenjar, Alexandra; Christensen, Celenie K.; White, Kerry M.; Elpeleg, Orly; Berger, Itai; Espineli, Edward J.; Fagerberg, Christina; Brasch-Andersen, Charlotte; Hansen, Lars Kjærsgaard; Feyma, Timothy; Hughes, Susan; Thiffault, Isabelle; Sullivan, Bonnie; Yan, Shuang; Keller, Kory; Keren, Boris; Mignot, Cyril; Kooy, Frank; Meuwissen, Marije; Basinger, Alice; Kukolich, Mary; Philips, Meredith; Ortega, Lucia; Drummond-Borg, Margaret; Lauridsen, Mathilde; Sorensen, Kristina; Lehman, Anna; Lopez-Range, Elena; Levy, Paul; Lessel, Davor; Lotze, Timothy; Madan-Khetarpal, Suneeta; Sebastian, Jessica; Vento, Jodie; Vats, Divya; Benman, L. Manace; Mckee, Shane; Mirzaa, Ghayda M.; Muss, Candace; Pappas, John; Peeters, Hilde; Romano, Corrado; Elia, Maurizio; Galesi, Ornella; Simon, Marleen E.H.; Van Gassen, Koen L.I.; Simpson, Kara; Stratton, Robert; Syed, Sabeen; Thevenon, Julien; Palafoll, Irene Valenzuela; Vitobello, Antonio; Bournez, Marie; Faivre, Laurence; Xia, Kun; Earl, Rachel K.; Nowakowski, Tomasz; Bernier, Raphael A.; Eichler, Evan E.; Pediatrics, School of Medicine
    Background: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. Methods: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. Results: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. Conclusions: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University